【題目】如圖,已知直線l1∥l2 , l1、l2之間的距離為8,點P到直線l1的距離為6,點Q到直線l2的距離為4,PQ=4 ,在直線l1上有一動點A,直線l2上有一動點B,滿足AB⊥l2 , 且PA+AB+BQ最小,此時PA+BQ=

【答案】4
【解析】解:作PE⊥l1于E交l2于F,在PF上截取PC=8,連接QC交l2于B,作BA⊥l1于A,此時PA+AB+BQ最短.作QD⊥PF于D.
在Rt△PQD中,∵∠D=90°,PQ=4 ,PD=18,
∴DQ= = ,
∵AB=PC=8,AB∥PC,
∴四邊形ABCP是平行四邊形,
∴PA=BC,
∴PA+BQ=CB+BQ=QC= = =4
所以答案是4

【考點精析】根據(jù)題目的已知條件,利用平移的性質的相關知識可以得到問題的答案,需要掌握①經(jīng)過平移之后的圖形與原來的圖形的對應線段平行(或在同一直線上)且相等,對應角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應點所連的線段平行(或在同一直線上)且相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,大樓AD與塔CB之間的距離AC長為27m,某人在樓底A處測得塔頂?shù)难鼋菫?0°,爬到樓頂D處測得塔頂B的仰角為30°,分別求大樓AD的高與塔BC的高(結果精確到0.1m,參考數(shù)據(jù): ≈2.24, ≈1.732, ≈1.414)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,過點A(﹣ ,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標分別是一元二次方程x2﹣2x﹣3=0的兩個根

(1)求線段BC的長度;
(2)試問:直線AC與直線AB是否垂直?請說明理由;
(3)若點D在直線AC上,且DB=DC,求點D的坐標;
(4)在(3)的條件下,直線BD上是否存在點P,使以A、B、P三點為頂點的三角形是等腰三角形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達最高位置,此時測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形AOBC中,O為坐標原點,OA、OB分別在x軸、y軸上,點B的坐標為(0,3 ),∠ABO=30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標為(
A.(
B.(2,
C.( ,
D.( ,3﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明隨機調查了若干市民租用共享單車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根據(jù)圖中信息,解答下列問題:
(1)這項被調查的總人數(shù)是多少人?
(2)試求表示A組的扇形統(tǒng)計圖的圓心角的度數(shù),補全條形統(tǒng)計圖;
(3)如果小明想從D組的甲、乙、丙、丁四人中隨機選擇兩人了解平時租用共享單車情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面三個命題: ①若 是方程組 的解,則a+b=1或a+b=0;
②函數(shù)y=﹣2x2+4x+1通過配方可化為y=﹣2(x﹣1)2+3;
③最小角等于50°的三角形是銳角三角形,
其中正確命題的序號為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解全校學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機選取該校部分學生進行調查,要求每名學生從中只選出一類最喜愛的電視節(jié)目,以下是根據(jù)調查結果繪制的統(tǒng)計圖表的一部分.

類別

A

B

C

D

E

節(jié)目類型

新聞

體育

動畫

娛樂

戲曲

人數(shù)

12

30

m

54

9


請你根據(jù)以上的信息,回答下列問題:
(1)被調查學生中,最喜愛體育節(jié)目的有人,這些學生數(shù)占被調查總人數(shù)的百分比為%.
(2)被調查學生的總數(shù)為人,統(tǒng)計表中m的值為 , 統(tǒng)計圖中n的值為
(3)在統(tǒng)計圖中,E類所對應扇形的圓心角的度數(shù)為
(4)該校共有2000名學生,根據(jù)調查結果,估計該校最喜愛新聞節(jié)目的學生數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某同學準備購買筆和本子送給農村希望小學的同學,在市場上了解到某種本子的單價比某種筆的單價少4元,且用30元買這種本子的數(shù)量與用50元買這種筆的數(shù)量相同.
(1)求這種筆和本子的單價;
(2)該同學打算用自己的100元壓歲錢購買這種筆和本子,計劃100元剛好用完,并且筆和本子都買,請列出所有購買方案.

查看答案和解析>>

同步練習冊答案