【題目】銅仁某校高中一年級組建籃球隊,對甲、乙兩名備選同學進行定位投籃測試,每次投10個球,共投10次.甲、乙兩名同學測試情況如圖所示:
根據(jù)圖6提供的信息填寫下表:
平均數(shù) | 眾數(shù) | 方差 | |
甲 | |||
乙 |
如果你是高一學生會文體委員,會選擇哪名同學進入籃球隊?請說明理由.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據(jù)平均數(shù)和眾數(shù)的定義求解;
(2)根據(jù)折線圖平均數(shù)一樣,而乙的眾數(shù)大,甲的方差小,成績穩(wěn)定;故選甲或乙均有道理,只要說理正確即可.
解:(1)據(jù)折線圖的數(shù)據(jù),甲的數(shù)據(jù)中,6出現(xiàn)的次數(shù)最多,故眾數(shù)是6;
平均數(shù)為:(9+6+6+8+7+6+6+8+8+6)=7;
乙的數(shù)據(jù)中,8出現(xiàn)的次數(shù)最多,故眾數(shù)是8;
平均數(shù)為:(4+5+7+6+8+7+8+8+8+9)=7;
平均數(shù) | 眾數(shù) | 方差 | |
甲 | 7 | 6 | |
乙 | 7 | 8 |
(2)
選甲:平均數(shù)與乙一樣,甲的方差小于乙的方差,甲的成績比乙的成績穩(wěn)定.
選乙:平均數(shù)與甲一樣,乙投中籃的眾數(shù)比甲投中籃的眾數(shù)大,且從折線圖看出,乙比甲潛能更大.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,,試判斷與的大小關系,并證明你的結(jié)論。
猜想:∠AED=∠C,
理由:∵∠2+∠ADF=180°( ),
∠1+∠2=180°( ),
∴∠1=∠ADF( ),
∴AD∥EF( ),
∴∠3=∠ADE( ),
∵∠3=∠B( ),
∴∠B=∠ADE( ),
∴DE∥BC( ),
∴∠AED=∠C( ),
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,半徑均為1個單位長度的半圓O1,O2,O3,… 組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2019秒時,點P的坐標是________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,點A,B的坐標分別為A(a,0),B(b,0),且a,
b滿足 |a+2|+=0,點C的坐標為(0,3).
(1)求a,b的值及S三角形ABC;
(2)若點M在x軸上,且S三角形ACM=S三角形ABC,試求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD的四個角向內(nèi)翻折后,恰好拼成一個無縫隙無重合的四邊形EFGH,EH=12cm,EF=l6cm則邊AD的長是( )
A.12cmB.16cmC.20cmD.24cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
(1)在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標;
(2)如圖2,若AE上有一動點P(不與A,E重合)自A點沿AE方向E點勻速運動,運動的速度為每秒1個單位長度,設運動的時間為t秒(0<t<5),過P點作ED的平行線交AD于點M,過點M作AE平行線交DE于點N.求四邊形PMNE的面積S與時間t之間的函數(shù)關系式;當t取何值時,s有最大值,最大值是多少?
(3)在(2)的條件下,當t為何值時,以A,M,E為頂點的三角形為等腰三角形,并求出相應的時刻點M的坐標?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D在BC上,點E在AB上,且DE∥AC,AE=5,DE=2,DC=3,動點P從點A出發(fā),沿邊AC以每秒2個單位長的速度向終點C運動,同時動點F從點C出發(fā),在線段CD上以每秒1個單位長的速度向終點D運動,設運動時間為t秒.
(1)線段AC的長=________;
(2)當△PCF與△EDF相似時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點,且x1<x2與y軸交于點C(0,4),其中x1,x2是方程x2﹣4x﹣12=0的兩個根.
(1)求拋物線的解析式;
(2)點M是線段AB上的一個動點,過點M作MN∥BC,交AC于點N,連結(jié)CM,當△CMN的面積最大時,求點M的坐標;
(3)點D(4,k)在(1)中拋物線上,點E為拋物線上一動點,在x軸上是否存在點F,使以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,直接寫出所有滿足條件的點F的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com