如圖,以1為半徑的⊙O1與以2為半徑的⊙O2內(nèi)切于點(diǎn)A,直線O1O2過點(diǎn)A,且交⊙O2于另一點(diǎn)B,⊙O2的弦PQ⊥O1O2,交O1O2于點(diǎn)K,且,PC∥O1O2,QD∥O1O2,PC、QD分別交過點(diǎn)O2的⊙O1的切線于點(diǎn)C、D.
(1)求圓心距O1O2;
(2)求四邊形PCDQ的邊長(zhǎng);
(3)若一動(dòng)點(diǎn)H由點(diǎn)Q出發(fā),沿四邊形的邊QP、PC、CD移動(dòng)到點(diǎn)D,設(shè)動(dòng)點(diǎn)H移動(dòng)的路程為x,△DQH的面積為y,求y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍.

【答案】分析:(1)根據(jù)題意,可知兩圓內(nèi)切,則圓心距等于兩圓半徑之差;
(2)首先可以證明該四邊形是正方形,設(shè)正方形PCDQ的邊長(zhǎng)為x.連接O2P,根據(jù)勾股定理列方程求解;
(3)根據(jù)運(yùn)動(dòng)的路徑,顯然需要考慮三種情況:H點(diǎn)在QP邊上移動(dòng)時(shí),即;H點(diǎn)在PC邊上移動(dòng)時(shí),即;H點(diǎn)在CD邊上移動(dòng)時(shí),即
根據(jù)三角形的面積公式分別找到三角形的底邊及其邊上的高進(jìn)行計(jì)算.
解答:解:(1)O1O2=2-1=1.

(2)∵CD切⊙O1于O2,
∴CD⊥O1O2
又PQ⊥O1O2,
∴CD∥PQ.
∵PC∥O1O2,QD∥O1O2,
∴PC∥QD,PC⊥QP.
,
∴PC=PQ.
故四邊形PCDQ是正方形.
設(shè)正方形PCDQ的邊長(zhǎng)為x,
,O2K=x,
由O2P2=O2K2+PK2,得
,
解得,,舍去
∴這個(gè)四邊形四條邊的長(zhǎng)都是


(3)當(dāng)H點(diǎn)在QP邊上移動(dòng)時(shí),則QH=x;
);
當(dāng)H點(diǎn)在PC邊上移動(dòng)時(shí),
);
當(dāng)H點(diǎn)在CD邊上移動(dòng)時(shí),
).
綜上所述
點(diǎn)評(píng):熟悉相切兩圓的性質(zhì):兩圓內(nèi)切,則圓心距等于兩圓半徑之差;兩圓外切,圓心距等于兩圓半徑之和.掌握正方形的判定方法,能夠分別畫出不同動(dòng)態(tài)時(shí)一種靜態(tài)時(shí)的位置,進(jìn)行分析計(jì)算圖形的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以1為半徑的⊙O1與以2為半徑的⊙O2內(nèi)切于點(diǎn)A,直線O1O2過點(diǎn)A,且交⊙O2于另一點(diǎn)B,⊙O2的弦精英家教網(wǎng)PQ⊥O1O2,交O1O2于點(diǎn)K,且PK=
12
O2K
,PC∥O1O2,QD∥O1O2,PC、QD分別交過點(diǎn)O2的⊙O1的切線于點(diǎn)C、D.
(1)求圓心距O1O2;
(2)求四邊形PCDQ的邊長(zhǎng);
(3)若一動(dòng)點(diǎn)H由點(diǎn)Q出發(fā),沿四邊形的邊QP、PC、CD移動(dòng)到點(diǎn)D,設(shè)動(dòng)點(diǎn)H移動(dòng)的路程為x,△DQH的面積為y,求y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,以1為半徑的⊙O1與以2為半徑的⊙O2內(nèi)切于點(diǎn)A,直線O1O2過點(diǎn)A,且交⊙O2于另一點(diǎn)B,⊙O2的弦PQ⊥O1O2,交O1O2于點(diǎn)K,且數(shù)學(xué)公式,PC∥O1O2,QD∥O1O2,PC、QD分別交過點(diǎn)O2的⊙O1的切線于點(diǎn)C、D.
(1)求圓心距O1O2;
(2)求四邊形PCDQ的邊長(zhǎng);
(3)若一動(dòng)點(diǎn)H由點(diǎn)Q出發(fā),沿四邊形的邊QP、PC、CD移動(dòng)到點(diǎn)D,設(shè)動(dòng)點(diǎn)H移動(dòng)的路程為x,△DQH的面積為y,求y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:廣東省期末題 題型:解答題

如圖,以1為半徑的⊙O1與以2為半徑的⊙O2內(nèi)切于點(diǎn)A,直線O1O2過點(diǎn)A,且交⊙O2于另一點(diǎn)B,⊙O2的弦PQ⊥O1O2,交O1O2于點(diǎn)K,且PK=O2K,PC∥O1O2,QD∥O1O2,PC、QD分別交過點(diǎn)O2的⊙O1的切線于點(diǎn)C、D。
(1)求圓心距O1O2;
(2)求四邊形PCDQ的邊長(zhǎng);
(3)若一動(dòng)點(diǎn)H由點(diǎn)Q出發(fā),沿四邊形的邊QP、PC、CD移動(dòng)到點(diǎn)D,設(shè)動(dòng)點(diǎn)H移動(dòng)的路程為x,△DQH的面積為y,求y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年廣東省廣州市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

如圖,以1為半徑的⊙O1與以2為半徑的⊙O2內(nèi)切于點(diǎn)A,直線O1O2過點(diǎn)A,且交⊙O2于另一點(diǎn)B,⊙O2的弦PQ⊥O1O2,交O1O2于點(diǎn)K,且,PC∥O1O2,QD∥O1O2,PC、QD分別交過點(diǎn)O2的⊙O1的切線于點(diǎn)C、D.
(1)求圓心距O1O2
(2)求四邊形PCDQ的邊長(zhǎng);
(3)若一動(dòng)點(diǎn)H由點(diǎn)Q出發(fā),沿四邊形的邊QP、PC、CD移動(dòng)到點(diǎn)D,設(shè)動(dòng)點(diǎn)H移動(dòng)的路程為x,△DQH的面積為y,求y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江西省宜春市宜豐縣中考數(shù)學(xué)模擬試卷(七)(解析版) 題型:解答題

如圖,以1為半徑的⊙O1與以2為半徑的⊙O2內(nèi)切于點(diǎn)A,直線O1O2過點(diǎn)A,且交⊙O2于另一點(diǎn)B,⊙O2的弦PQ⊥O1O2,交O1O2于點(diǎn)K,且,PC∥O1O2,QD∥O1O2,PC、QD分別交過點(diǎn)O2的⊙O1的切線于點(diǎn)C、D.
(1)求圓心距O1O2;
(2)求四邊形PCDQ的邊長(zhǎng);
(3)若一動(dòng)點(diǎn)H由點(diǎn)Q出發(fā),沿四邊形的邊QP、PC、CD移動(dòng)到點(diǎn)D,設(shè)動(dòng)點(diǎn)H移動(dòng)的路程為x,△DQH的面積為y,求y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案