【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC,AC于點(diǎn)D,E,DG⊥AC于點(diǎn)G,交AB的延長(zhǎng)線于點(diǎn)F.
(1)求證:直線FG是⊙O的切線;
(2)若AC=10,cosA=,求CG的長(zhǎng).
【答案】
(1)
證明:如圖1,連接OD,
∵AB=AC,
∴∠C=∠ABC,
∵OD=OB,
∴∠ABC=∠ODB,
∴∠ODB=∠C,
∴OD∥AC,
∴∠ODG=∠DGC,
∵DG⊥AC,
∴∠DGC=90°,
∴∠ODG=90°,
∴OD⊥FG,
∵OD是⊙O的半徑,
∴直線FG是⊙O的切線.
(2)
解:如圖2,
∵AB=AC=10,AB是⊙O的直徑,
∴OA=OD=10÷2=5,
由(1),可得
OD⊥FG,OD∥AC,
∴∠ODF=90°,∠DOF=∠A,
在△ODF和△AGF中,
∴△ODF∽△AGF,
∴,
∵cosA=,
∴cos∠DOF=,
∴==,
∴AF=AO+OF=5,
∴,
解得AG=7,
∴CG=AC﹣AG=10﹣7=3,
即CG的長(zhǎng)是3.
【解析】(1)首先判斷出OD∥AC,推得∠ODG=∠DGC,然后根據(jù)DG⊥AC,可得∠DGC=90°,∠ODG=90°,推得OD⊥FG,即可判斷出直線FG是⊙O的切線.
(2)首先根據(jù)相似三角形判定的方法,判斷出△ODF∽△AGF,再根據(jù)cosA=,可得cos∠DOF=;然后求出OF、AF的值,即可求出AG、CG的值各是多少.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解切線的判定定理(切線的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線),還要掌握相似三角形的判定與性質(zhì)(相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,∠CDB=30°,CD=2 ,則陰影部分圖形的面積為( )
A.4π
B.2π
C.π
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,全國(guó)總用水量逐年上升,全國(guó)總用水量可分為農(nóng)業(yè)用水量、工業(yè)用水量和生活用水量三部分.為了合理利用水資源,我國(guó)連續(xù)多年對(duì)水資源的利用情況進(jìn)行跟蹤調(diào)查,將所得數(shù)據(jù)進(jìn)行處理,繪制了2008年全國(guó)總用水量分布情況扇形統(tǒng)計(jì)圖和2004﹣2008年全國(guó)生活用水量折線統(tǒng)計(jì)圖的一部分如下(A指農(nóng)業(yè)用水量;B指工業(yè)用水量;C指生活用水量):
(1)2007年全國(guó)生活用水量比2004年增加了16%,則2004年全國(guó)生活用水量為_(kāi)___億m3 , 2008年全國(guó)生活用水量比2004年增加了20%,則2008年全國(guó)生活用水量為_(kāi)___億m3;
(2)根據(jù)以上信息,請(qǐng)直接在答題卡上補(bǔ)全折線統(tǒng)計(jì)圖;
(3)根據(jù)以上信息2008年全國(guó)總水量為_(kāi)__億m3;
(4)我國(guó)2008年水資源總量約為2.75×104億m3 , 根據(jù)國(guó)外的經(jīng)驗(yàn),一個(gè)國(guó)家當(dāng)年的全國(guó)總用水量超過(guò)這個(gè)國(guó)家年水資源總量的20%,就有可能發(fā)生“水危機(jī)”.依據(jù)這個(gè)標(biāo)準(zhǔn),2008年我國(guó)是否屬于可能發(fā)生“水危機(jī)”的行列?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,小明家小區(qū)空地上有兩顆筆直的樹(shù)CD、EF.一天,他在A處測(cè)得樹(shù)頂D的仰角∠DAC=30°,在B處測(cè)得樹(shù)頂F的仰角∠FBE=45°,線段BF恰好經(jīng)過(guò)樹(shù)頂D.已知A、B兩處的距離為2米,兩棵樹(shù)之間的距離CE=3米,A、B、C、E四點(diǎn)在一條直線上,求樹(shù)EF的高度.(≈1.7,≈1.4,結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC,OA=3,OC=6,將△ABC沿對(duì)角線AC翻折,使點(diǎn)B落在點(diǎn)B′處,AB′與y軸交于點(diǎn)D,則點(diǎn)D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種電纜在空中架設(shè)時(shí),兩端掛起的電纜下垂都近似拋物線y= x2的形狀.今在一個(gè)坡度為1:5的斜坡上,沿水平距離間隔50米架設(shè)兩固定電纜的位置離地面高度為20米的塔柱(如圖),這種情況下在豎直方向上,下垂的電纜與地面的最近距離為( )
A.12.75米
B.13.75米
C.14.75米
D.17.75米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某人在山坡坡腳A處測(cè)得電視塔尖點(diǎn)C的仰角為60°,沿山坡向上走到P處再測(cè)得點(diǎn)C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點(diǎn)P的鉛直高度.(測(cè)傾器高度忽略不計(jì),結(jié)果保留根號(hào)形式)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,⊙O的半徑為3,∠A=45°,則的長(zhǎng)是( 。
A.π
B.π
C.π
D.π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)共有1800名初三學(xué)生,為了解這些學(xué)生的體質(zhì)健康狀況,開(kāi)學(xué)之初隨機(jī)選取部分學(xué)生進(jìn)行體育測(cè)試,以下是根據(jù)測(cè)試成績(jī)繪制的統(tǒng)計(jì)圖表的一部分.
等級(jí) | 測(cè)試成績(jī)(分) | 人數(shù) |
優(yōu)秀 | 45≤x≤50 | 140 |
良好 | 37.5≤x<45 | 36 |
及格 | 30≤x<37.5 | |
不及格 | x<30 | 6 |
根據(jù)以上信息,解答下列問(wèn)題:
(1)本次測(cè)試學(xué)生體質(zhì)健康成績(jī)?yōu)榱己玫挠?/span>人,達(dá)到優(yōu)秀的人數(shù)占本次測(cè)試總?cè)藬?shù)的百分比為%.
(2)本次測(cè)試的學(xué)生數(shù)為人,其中,體質(zhì)健康成績(jī)?yōu)榧案竦挠?/span>人,不及格的人數(shù)占本次測(cè)試總?cè)藬?shù)的百分比為%.
(3)試估計(jì)該地區(qū)初三學(xué)生開(kāi)學(xué)之初體質(zhì)健康成績(jī)達(dá)到良好及以上等級(jí)的學(xué)生數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com