【題目】為方便市民出行,減輕城市中心交通壓力,長沙市正在修建貫穿星城南北、東西的地鐵1、2號線.已知修建地鐵1號線24千米和2號線22千米共需投資265億元;若1號線每千米的平均造價比2號線每千米的平均造價多0.5億元.
(1)求1號線,2號線每千米的平均造價分別是多少億元?
(2)除1、2號線外,長沙市政府規(guī)劃到2018年還要再建91.8千米的地鐵線網(wǎng).據(jù)預(yù)算,這91.8千米地鐵線網(wǎng)每千米的平均造價是1號線每千米的平均造價的1.2倍,則還需投資多少億元?
【答案】(1)1號線,2號線每千米的平均造價分別是6億元和5.5億元;(2)還需投資660.96億元.
【解析】
試題分析:(1)假設(shè)1號線,2號線每千米的平均造價分別是x億元,y億元,根據(jù)“修建地鐵1號線24千米和2號線22千米共需投資265億元;若1號線每千米的平均造價比2號線的平均造價多0.5億元”分別得出等式求出即可;
(2)根據(jù)(1)中所求得出建91.8千米的地鐵線網(wǎng),每千米的造價,進而求出即可.
解:(1)設(shè)1號線,2號線每千米的平均造價分別是x億元,y億元,
由題意得出:,
解得:,
答:1號線,2號線每千米的平均造價分別是6億元和5.5億元;
(2)由(1)得出:
91.8×6×1.2=660.96(億元),
答:還需投資660.96億元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例,請補充完整.
原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,
連接EF,則EF=BE+DF,試說明理由.
(1)思路梳理
∵AB=AD
∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合
∵∠ADC=∠B=90°
∴∠FDG=180°
∴點F、D、G共線
根據(jù) ,易證△AFG≌ ,進而得EF=BE+DF.
(2)聯(lián)想拓展
如圖2,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的數(shù)量關(guān)系,并寫出推理過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了了解七年級學(xué)生的身體素質(zhì)情況,隨機抽取了500名七年級學(xué)生進行檢測,身體素質(zhì)達標(biāo)率為92%,請你估計該市6萬名七年級學(xué)生中,身體素質(zhì)達標(biāo)的大約有萬人。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個圓分割成三個扇形,它們的圓心角的度數(shù)之比為2:3:4,則這個扇形圓心角的度數(shù)為( )
A.30°,60°,90°
B.60°,120°,180°
C.50°,100°,150°
D.80°,120°,160°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在完全重合放置的兩張矩形紙片ABCD中,AB=4,BC=8,將上面的矩形紙片折疊,使點C與點A重合,折痕為EF,點D的對應(yīng)點為G,連接DG,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一組數(shù)據(jù)2,3,4,5,x的方差與另一組數(shù)據(jù)5,6,7,8,9的方差相等,則x的值為( )
A.1 B.6 C.1或6 D.5或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列所給出坐標(biāo)的點中,在第二象限的是
A. (2,3) B. (﹣2,3) C. (﹣2,﹣3) D. (2,﹣3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com