(2011•淮安一模)如圖,四邊形ABCD是邊長(zhǎng)為9的正方形紙片,將其沿MN折疊,使點(diǎn)B落在CD邊上的B′處,點(diǎn)A對(duì)應(yīng)點(diǎn)為A′,且B′C=3,則AM的長(zhǎng)是
2
2
分析:連接BM,MB′,由于CB′=3,則DB′=6,在Rt△ABM和Rt△MDB′中由勾股定理求得AM的值.
解答:解:設(shè)AM=x,
連接BM,MB′,
由題意知,MB=MB′,
則有AB2+AM2=BM2=B′M2=MD2+DB′2,
即92+x2=(9-x)2+(9-3)2,
解得x=2,
即AM=2.
故答案為:2.
點(diǎn)評(píng):本題考查了圖形翻折變換的性質(zhì),熟知圖形翻折不變性的性質(zhì)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•淮安一模)
1
2
的絕對(duì)值是
(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•淮安一模)已知∠A是銳角,sin∠A=
3
5
,則cos∠A的值( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•淮安一模)如圖,Rt△ABC中,∠C=90°,∠ABC的平分線BD交AC于D,若CD=3cm,則點(diǎn)D到AB的距離DE是
3cm
3cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•淮安一模)計(jì)算:(-
1
2
)-1+(x2+1)0+
4

查看答案和解析>>

同步練習(xí)冊(cè)答案