解答:解:(1)由題意,點(diǎn)B的坐標(biāo)為(0,2),
∴OB=2,
∵tan∠OAB=2,即
=2.
∴OA=1.
∴點(diǎn)A的坐標(biāo)為(1,0),
又∵二次函數(shù)y=x
2+mx+2的圖象過點(diǎn)A,
∴0=1
2+m+2.
解得m=-3,
∴所求二次函數(shù)的解析式為y=x
2-3x+2;
(2)如圖,作CE⊥x軸于E,
由于∠BAC=90°,可知∠CAE=∠OBA,△CAE≌△OBA,
可得CE=OA=1,AE=OB=2,
①順時(shí)針旋轉(zhuǎn)90°,則點(diǎn)C的坐標(biāo)為(3,1),
由于沿y軸運(yùn)動(dòng),故圖象開口大小、對(duì)稱軸均不變,
設(shè)出解析式為y=x
2-3x+c,代入C點(diǎn)作標(biāo)得1=9-9+c,
解得c=1,
所求二次函數(shù)解析式為y=x
2-3x+1,
②逆時(shí)針旋轉(zhuǎn)90°,則點(diǎn)C的坐標(biāo)為(-1,-1),
由于沿y軸運(yùn)動(dòng),故圖象開口大小、對(duì)稱軸均不變,
設(shè)出解析式為y=x
2-3x+c,代入C點(diǎn)作標(biāo)得1+3+c=-1,
解得c=-5,
所求二次函數(shù)解析式為y=x
2-3x-5;
(3)由(2),經(jīng)過平移后所得圖象是原二次函數(shù)圖象向下平移1個(gè)單位后所得的圖象,
那么對(duì)稱軸直線x=
不變,且BB
1=DD
1=1,
∵點(diǎn)P在平移后所得二次函數(shù)圖象上,
設(shè)點(diǎn)P的坐標(biāo)為(x,x
2-3x+1).
在△PBB
1和△PDD
1中,
∵S
△PBB1=2S
△PDD1,
∴邊BB
1上的高是邊DD
1上的高的2倍.
①當(dāng)點(diǎn)P在對(duì)稱軸的右側(cè)時(shí),x=2(x-
),得x=3,
∴點(diǎn)P的坐標(biāo)為(3,1);
②當(dāng)點(diǎn)P在對(duì)稱軸的左側(cè),同時(shí)在y軸的右側(cè)時(shí),x=2(
-x),得x=1,
∴點(diǎn)P的坐標(biāo)為(1,-1);
③當(dāng)點(diǎn)P在y軸的左側(cè)時(shí),x<0,又-x=2(
-x),
得x=3>0(舍去),
∴所求點(diǎn)P的坐標(biāo)為(3,1)或(1,-1);
設(shè)點(diǎn)P的坐標(biāo)為(x,x
2-3x-5),同理可得P的坐標(biāo)為(3,-5);(1,-7),
綜上可知:P的坐標(biāo)為:(3,1);(3,-5);(1,-1);(1,-7).