如圖,將一副直角三角尺的直角頂點C疊放在一起.
(1)若∠DCE=35°,∠ACB=______;若∠ACB=140°,則∠DCE=______;
(2)猜想∠ACB與∠DCE的大小有何特殊關系,并說明理由;
(3)若保持三角尺BCE(其中∠B=45°)不動,三角尺ACD的CD邊與CB邊重合,然后將三角尺ACD(其中∠D=30°)繞點C按逆時針方向任意轉(zhuǎn)動一個角度∠BCD.
設∠BCD=α(0°<α<90°)
①∠ACB能否是∠DCE的4倍?若能求出α的值;若不能說明理由.
②當這兩塊三角尺各有一條邊互相垂直時直接寫出α的所有可能值.

解:(1)∵∠ACD=∠ECB=90°,∠DCE=35°,
∴∠ACB=180°-35°=145°.
∵∠ACD=∠ECB=90°,∠ACB=140°,
∴∠DCE=180°-140°=40°.
故答案為:145°,40°;

(2)∠ACB+∠DCE=180°或互補,
理由:∵∠ACE+∠ECD+∠DCB+∠ECD=180.
∵∠ACE+∠ECD+∠DCB=∠ACB,
∴∠ACB+∠DCE=180°,即∠ACB與∠DCE互補.

(3)①當∠ACB是∠DCE的4倍,
∴設∠ACB=4x,∠DCE=x,
∵∠ACB+∠DCE=180°,
∴4x+x=180°
解得:x=36°,
∴α=90°-36°=54°;

②CE⊥AD時,α=30°,
BE⊥CD時,α=45°,
BE⊥AD時,α=75°.
分析:(1)由于是兩直角三角形板重疊,重疊的部分就比90°+90°減少的部分,所以若∠DCE=35°,則∠ACB的度數(shù)為180°-35°=145°,∠ACB=140°,則∠DCE的度數(shù)為180°-140°=40°
(2)由于∠ACD=∠ECB=90°,重疊的度數(shù)就是∠ECD的度數(shù),所以∠ACB+∠DCE=180°.
(3)①當∠ACB是∠DCE的4倍,設∠ACB=4x,∠DCE=x,利用∠ACB與∠DCE互補得出即可;
②分別利用CE⊥AD,BE⊥CD,BE⊥AD分別求出即可.
點評:此題主要考查了互補、互余的定義等知識,解決本題的關鍵是理解重疊的部分實質(zhì)是兩個角的重疊.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

我們知道,“直角三角形斜邊上的高線將三角形分成兩個與原三角形相似的直角三角形”用這一方法,將矩形ABCD分割成大小不同的七個相似直角三角形.按從大到小的順序編號為①至⑦(如圖),從而割成一副“三角七巧板”.已精英家教網(wǎng)知線段AB=1,∠BAC=θ.
(1)請用θ的三角函數(shù)表示線段BE的長
 
;
(2)圖中與線段BE相等的線段是
 

(3)仔細觀察圖形,求出⑦中最短的直角邊DH的長.(用θ的三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆浙江樂清鹽盤一中八年級上學期期中考試數(shù)學試卷(解析版) 題型:填空題

如圖,將一副直角三角扳疊在一起,使直角頂點重合于O點,則∠AOB+∠DOC=_____

 

查看答案和解析>>

科目:初中數(shù)學 來源:專項題 題型:解答題

我們知道“直角三角形斜邊上的高將三角形分成兩個與原三角形相似的直角三角形”,用這一方法,將矩形ABCD分割成大小不同的七個相似直角三角形,按從大到小的順序編號為①至⑦(如圖),從而制成一副“三角七巧板”,已知AB=1,∠BAC=。
(1)請用的三角函數(shù)表示線段BE的長:____;
(2)圖中與線段BE長度相等的線段是_____;
(3)仔細觀察圖形,求出⑦中最短的直角邊DH的長(用的三角函數(shù)表示)。

查看答案和解析>>

科目:初中數(shù)學 來源:第1章《直角三角形的邊角關系》中考題集(23):1.4 船有觸角的危險嗎(解析版) 題型:解答題

我們知道,“直角三角形斜邊上的高線將三角形分成兩個與原三角形相似的直角三角形”用這一方法,將矩形ABCD分割成大小不同的七個相似直角三角形.按從大到小的順序編號為①至⑦(如圖),從而割成一副“三角七巧板”.已知線段AB=1,∠BAC=θ.
(1)請用θ的三角函數(shù)表示線段BE的長______;
(2)圖中與線段BE相等的線段是______;
(3)仔細觀察圖形,求出⑦中最短的直角邊DH的長.(用θ的三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年浙江樂清鹽盤一中八年級上學期期中考試數(shù)學試卷(帶解析) 題型:填空題

如圖,將一副直角三角扳疊在一起,使直角頂點重合于O點,則∠AOB+∠DOC=_____

查看答案和解析>>

同步練習冊答案