等邊三角形的面積S與其周長(zhǎng)l之間的函數(shù)表達(dá)式為_(kāi)_______

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)關(guān)系中,是二次函數(shù)的是( �。�
A、在彈性限度內(nèi),彈簧的長(zhǎng)度y與所掛物體質(zhì)量x之間的關(guān)系B、當(dāng)距離一定時(shí),火車(chē)行駛的時(shí)間t與速度v之間的關(guān)系C、等邊三角形的周長(zhǎng)C與邊長(zhǎng)a之間的關(guān)系D、圓心角為120°的扇形面積S與半徑R之間的關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)活動(dòng)課上,老師要求同學(xué)們先做下面的“循環(huán)分割”操作,然后再探索規(guī)律:
如圖1,是一等腰梯形紙片,其腰長(zhǎng)與上底長(zhǎng)相等,且底角分別60°和120°,按要求開(kāi)始操作(每次分割,紙片均不得留有剩余);
精英家教網(wǎng)
第1次分割:將原等腰梯形紙片分割成3個(gè)等邊三角形;
第2次分割:將上次分割出的一個(gè)等邊三角形分割成3個(gè)全等的等腰梯形,然后將剛分割出的一個(gè)等腰梯形分割成3個(gè)等邊三角形;
以后按第2次分割的方法進(jìn)行下去…請(qǐng)解答下列問(wèn)題:
(1)請(qǐng)你在圖2中畫(huà)出前兩次分割后的圖案;
(2)若原等腰梯形的面積為a,請(qǐng)你通過(guò)操作、觀察,將第2次,第3次分割后所得的一個(gè)最小等邊三角形的面積分別填入下表:
 
分割次數(shù)(n) 1 2 3
一個(gè)最小等邊三角形的面積(S)
1
3
a
   
(3)請(qǐng)你猜想,分割所得的一個(gè)最小等邊三角形面積S與分割次數(shù)n有何關(guān)系?(請(qǐng)直接用含a的式子表示,不需寫(xiě)推理過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

初步探索 感悟方法
如圖1用水平線(xiàn)和豎直線(xiàn)將平面分成若干個(gè)面積為1的小正方形格子,小正方形的頂點(diǎn)為格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形稱(chēng)為格點(diǎn)多邊形.設(shè)格點(diǎn)多邊形的面積為S,它各邊上格點(diǎn)的個(gè)數(shù)和為x.

(1)上圖中的格點(diǎn)多邊形,其內(nèi)部都只有1個(gè)格點(diǎn),它們的面積S與各邊上格點(diǎn)的個(gè)數(shù)和x的對(duì)應(yīng)關(guān)系如下表:
序號(hào)
S 2 2.5 3 4
x 4 5 6 8
請(qǐng)用含x的代數(shù)式表示S,即S=
1
2
x
1
2
x
;
(2)進(jìn)一步探索:你可以畫(huà)出一些格點(diǎn)多邊形,使這些多邊形內(nèi)部有而且只有2個(gè)格點(diǎn),在這種情況下,用含x的代數(shù)式表示S,即S=
1
2
x+1
1
2
x+1
;
(3)請(qǐng)你繼續(xù)探索并歸納:當(dāng)格點(diǎn)多邊形內(nèi)部有且只有n個(gè)格點(diǎn)時(shí),直接寫(xiě)出S與x之間的關(guān)系式.
積累經(jīng)驗(yàn) 拓展延伸
如圖2,對(duì)等邊三角形網(wǎng)格中的類(lèi)似問(wèn)題進(jìn)行探究:等邊三角形網(wǎng)格中每個(gè)小等邊三角形的面積為1,小等邊三角形的頂點(diǎn)為格點(diǎn),以格點(diǎn)為頂點(diǎn)的多邊形稱(chēng)為格點(diǎn)多邊形.
(4)設(shè)格點(diǎn)多邊形的面積為S,它各邊上格點(diǎn)的個(gè)數(shù)和為x,當(dāng)格點(diǎn)多邊形內(nèi)部有且只有n個(gè)格點(diǎn)時(shí),直接寫(xiě)出S與x之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

等腰梯形ABCD中,AD∥BC,AB=CD,面積S=9,建立如圖所示的直角坐標(biāo)系,已知A(1,0)、B(0,3).
(1)求C、D兩點(diǎn)坐標(biāo);
(2)取點(diǎn)E(0,1),連接DE并延長(zhǎng)交AB于F,求證:DF⊥AB;
(3)將梯形ABCD繞A點(diǎn)旋轉(zhuǎn)180°到AB′C′D′,求對(duì)稱(chēng)軸平行于y軸,且經(jīng)過(guò)A、B′、C′三點(diǎn)的拋物線(xiàn)的解析式;
(4)是否存在這樣的直線(xiàn),滿(mǎn)足以下條件:①平行于x軸,②與(3)中的拋物線(xiàn)有兩個(gè)交點(diǎn),且這兩交點(diǎn)和(3)中的拋物線(xiàn)的頂點(diǎn)恰是一個(gè)等邊三角形的三個(gè)頂點(diǎn)?若存在,求出這個(gè)等邊三角形的面積;精英家教網(wǎng)若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2002•泰州)等腰梯形ABCD中,AD∥BC,AB=CD,面積S=9,建立如圖所示的直角坐標(biāo)系,已知A(1,0)、B(0,3).
(1)求C、D兩點(diǎn)坐標(biāo);
(2)取點(diǎn)E(0,1),連接DE并延長(zhǎng)交AB于F,求證:DF⊥AB;
(3)將梯形ABCD繞A點(diǎn)旋轉(zhuǎn)180°到AB′C′D′,求對(duì)稱(chēng)軸平行于y軸,且經(jīng)過(guò)A、B′、C′三點(diǎn)的拋物線(xiàn)的解析式;
(4)是否存在這樣的直線(xiàn),滿(mǎn)足以下條件:①平行于x軸,②與(3)中的拋物線(xiàn)有兩個(gè)交點(diǎn),且這兩交點(diǎn)和(3)中的拋物線(xiàn)的頂點(diǎn)恰是一個(gè)等邊三角形的三個(gè)頂點(diǎn)?若存在,求出這個(gè)等邊三角形的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案