解:∠GPF=180°-∠α.
(1)證明:連接BD,連接CE.∵AB=AC、AD=AE,∠BAC=∠DAE
∴∠BAD=∠CAE∴△ABD≌△ACE,
∴∠ABD=∠ACE.∵G、P、F分別是BC、CD、DE的中點,
∴PG∥BD,PF∥CE.∴∠PGC=∠CBD,∠DPF=∠DCE=∠DCA+∠ACE=∠DCA+∠ABD,
∠DPG=∠PGC+∠BCD=∠CBD+∠BCD,
∠GPF=∠DPF+∠DPG=∠DCA+∠ABD+∠CBD+∠BCD=180°-∠BAC=180°-∠α,
即∠GPF=180°-∠α.
(2)選取圖2證明:
連接BD,連接CE.
∵AB=AC、AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,
∴△ABD≌△ACE,
∴∠ABD=∠ACE.
設BD與CE交于點O,AC與BD交于點K,∠AKB=∠CKO,
∴∠BOC=∠BAC,∠COD=180°-∠α.
∵G、P、F分別是BC、CD、DE的中點,
∴PG∥BD,PF∥CE.
∴∠GPC=∠BDC,∠DPF=∠DCE,
∠GPF=180°-∠GPC-∠DPF=180°-∠BDC-∠DCE=∠COD,
即∠GPF=180°-∠α.
選取圖3證明:
∵AB=AC、AD=AE,∴BD=CE,
∵G、P、F分別是BC、CD、DE的中點,∴PG∥BD,PF∥CE.
∴∠ADC=∠DPG,∠DPF=∠ACD,∠GPF=∠DPF+∠DPG=∠ADC+∠ACD
=180°-∠BAC=180°-∠α,即∠GPF=180°-∠α.
分析:∠GPF與∠α的關系是互為補角,
(1)連接BD,連接CE,由已知可證明△ABD≌△ACE,則∠ABD=∠ACE.因為G、P、F分別是BC、CD、DE的中點,則PG∥BD,PF∥CE.進而得出∠GPF=180°-∠α.
(2)選取圖2或3都可以,例如圖3,由AB=AC、AD=AE,得BD=CE,再根據(jù)G、P、F分別是BC、CD、DE的中點,可得出PG∥BD,PF∥CE.則∠GPF=180°-∠α.
點評:本題考查了全等三角形的判定和性質(zhì)以及等腰三角形的性質(zhì),是一個變式訓練題,難度偏大.