如圖1,平面直角坐標(biāo)系上有一透明片,透明片上有一拋物線是一點(diǎn)P(2,4),且拋物線為二次函數(shù)y=(x-a)2+
a2
的圖形,當(dāng)a取不同的值時(shí),其圖象構(gòu)成一個(gè)“拋物線系”,它們的頂點(diǎn)在一條直線l上,如圖2分別是當(dāng)a=-1,a=0,a=1,a=2時(shí)二次函數(shù)的圖象.
(1)直線l的解析式是y=
 
;
(2)將此透明片上的拋物線頂點(diǎn)沿直線l平移后,得拋物線的頂點(diǎn)坐標(biāo)為(6,3),若平移后的點(diǎn)P記為P1,則此時(shí)P1的坐標(biāo)為
 
;
(3)將此透明片上的拋物線頂點(diǎn)沿直線l平移線段OP長時(shí),求此時(shí)的二次函數(shù)的解析式.
精英家教網(wǎng)
分析:(1)先把a(bǔ)=0和a=1代入y=(x-a)2+
a
2
得到兩個(gè)頂點(diǎn)坐標(biāo),然后利用待定系數(shù)法求出直線l的解析式為y=
1
2
x;
(2)先通過頂點(diǎn)(0,0)平移到(6,3)得到平移的方向和平移的單位,然后把點(diǎn)(2,4)按同樣的方法進(jìn)行平移即可得到P1的坐標(biāo);
(3)先利用兩點(diǎn)的距離公式計(jì)算出OP=2
5
,再確定直線l上到原點(diǎn)的距離為2
5
的點(diǎn),然后利用頂點(diǎn)式寫出對(duì)應(yīng)的拋物線解析式即可.
解答:解:(1)當(dāng)a=0時(shí),y=x2,頂點(diǎn)坐標(biāo)為(0,0),
當(dāng)a=1時(shí),y=(x-1)2+
1
2
,頂點(diǎn)坐標(biāo)為(1,
1
2
),
設(shè)直線l的解析式為y=kx,
把點(diǎn)(1,
1
2
)代入得k=
1
2

所以直線l的解析式為y=
1
2
x;
(2)因?yàn)辄c(diǎn)P(2,4)在拋物線y=x2上,頂點(diǎn)為(6,3)的拋物線解析式為y=(x-6)2+3,
而拋物線y=x2向上平移3個(gè)單位,向右平移6個(gè)單位得到y(tǒng)=(x-6)2+3,
所以點(diǎn)P(2,4)向上平移3個(gè)單位,向右平移6個(gè)單位得到P1的坐標(biāo)為(8,7);
故答案為
1
2
x,(8,7);
(3)OP=
22+42
=2
5

設(shè)平移后點(diǎn)的坐標(biāo)為(t,
1
2
t),
所以t2+(
1
2
t)2=(2
5
2,解得t=±4,
則平移后點(diǎn)的坐標(biāo)為(4,2)或(-4,-2),
所以此時(shí)的二次函數(shù)的解析式為y=(x-4)2+2或y=(x+4)2-2.
點(diǎn)評(píng):本題考查了二次函數(shù)與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通?衫脙煞N方法:一是求出原拋物線上任意兩點(diǎn)平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點(diǎn)坐標(biāo),即可求出解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,直線AB分別與x軸、y軸交于點(diǎn)B、A,與精英家教網(wǎng)反比例函數(shù)的圖象分別交于點(diǎn)C、D,CE⊥x軸于點(diǎn)E,tan∠ABO=
12
,OB=4,OE=2.
(1)求該反比例函數(shù),直線AB的解析式.
(2)求D點(diǎn)坐標(biāo),及△CED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,拋物線的頂點(diǎn)P到x軸的距離是4,與x軸交于0、M兩點(diǎn),O精英家教網(wǎng)M=4,矩形ABCD的邊BC在線段OM上,點(diǎn)A、D在拋物線上.
(1)請(qǐng)寫出P、M兩點(diǎn)坐標(biāo),并求這條拋物線的解析式;
(2)當(dāng)矩形ABCD的周長為最大值時(shí),將矩形繞它的中心順時(shí)針方向旋轉(zhuǎn)90°,求點(diǎn)D的坐標(biāo);
(3)連接OP,請(qǐng)判斷在拋物線上是否存在點(diǎn)Q(除點(diǎn)M外)使△OPQ是等腰三角形?若存在,寫出點(diǎn)Q到y(tǒng)軸的距離;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(8,0),D點(diǎn)坐標(biāo)為(0,6),則AC長為
10
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,點(diǎn)A(2,2),試在x軸上找點(diǎn)P,使△AOP是等腰三角形,那么這樣的三角形有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案