【題目】如圖,△ABC為等腰三角形,AB=AC,AB>BC,∠1=∠2≠90°,∠1+∠BAC=180°,點A、F、E、D在一條直線上,點D在BC邊上,CD=2BD.若△ABC的面積為40,求△ABE與△CDF的面積之和________
【答案】
【解析】
先證明△ABE≌△CAF(AAS),再得到△ABE與△CDF的面積之和即為△ADC的面積,再求△ADC的面積即可.
∵∠1=∠2≠90°,∠1+∠BAC=180°,
∴∠2+∠BAC=180°,
又∵∠2+∠FAC+∠FCA=180°,
∴∠BAC=∠FAC+∠FCA,
又∵∠BAC=∠BAE+∠FAC,
∴∠BAE+∠FAC=∠FAC+∠FCA,
∴∠BAE=∠FCA,
在△ABE和△CAF中
,
∴△ABE≌△CAF(AAS),
∴△ABE與△CDF的面積之和為S△ADC。
∵點D在BC邊上,CD=2BD.若△ABC的面積為40,
∴S△AD=.
∴△ABE與△CDF的面積之和為
故答案是:.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線交 y軸于點為A,頂點為D,對稱軸與x軸交于點H.
(1)求頂點D的坐標(用含m的代數(shù)式表示);
(2)當拋物線過點(1,-2),且不經過第一象限時,平移此拋物線到拋物線的位置,求平移的方向和距離;
(3)當拋物線頂點D在第二象限時,如果∠ADH=∠AHO,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廣場上一個形狀是平行四邊形的花壇,分別種有紅、黃、藍、白、橙、紫6種顏色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列說法中錯誤的是( 。
A.紅花,白花種植面積一定相等
B.紅花,藍花種植面積一定相等
C.藍花,黃花種植面積一定相等
D.紫花,橙花種植面積一定相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內接四邊形,AB是⊙O的直徑,∠D=108°,連接AC.(1)求∠BAC的度數(shù);(2)若∠DAC=45°,DC=8,求圖中陰影部分的面積(保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△ABC 中,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.
(1)求∠DAE的度數(shù);
(2)如圖②,若把“AE⊥BC”變成“點F在DA的延長線上,FE⊥BC”,其它條件不變,求∠DFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】無人機技術我國逐漸發(fā)展迅速,全球首款噸位級貨運無人機從設計到總裝在四川成都雙流區(qū)完成,現(xiàn)有兩架航拍無人機:1號無人機從海拔5米處出發(fā),以1米/秒的速度上升。與此同時,2號無人機從海拔15米處出發(fā),以0.5米/秒的速度上升(設無人機上升時間為秒)。
(1)求出1號無人機所在位置的海拔(米)與之間的關系式和2號無人機所在位置的海拔(米)與之間的關系式?
(2)在某一時刻兩架無人機能否位于同一高度?如果能,請求出無人機上升的時間與高度?如果不能,請說明理由.
(3)上升多少時間,兩架無人機所在位置的海拔相差5米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BE⊥AC、CF⊥AB于點E、F,BE與CF交于點D,DE=DF,連接AD.
求證:(1)∠FAD=∠EAD;
(2)BD=CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù) (x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k的值是( )
A.B. C.D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某車間的甲、乙兩名工人分別同時生產同種零件,在開始生產的前2個小時為生產磨合期,2個小時后有一人停工一段時間對設備進行改良升級,以提升生產效率,另一人進入正常的生產模式,他們每人生產的零件總數(shù)(個)與生產時間(小時)的關系如圖所示,根據(jù)圖象回答:
(1)在生產過程中,哪位工人對設備進行改良升級,停止生產多少小時?
(2)當為多少時,甲、乙所生產的零件個數(shù)第一次相等?甲、乙中,誰先完成一天的生產任務?
(3)設備改良升級后每小時生產零件的個數(shù)是多少?與另一工人的正常生產速度相比每小時多生產幾個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com