【題目】如圖,在△ABC中,點D、E、F分別在邊BC、AB、CA上,且DE∥CA,DF∥BA.則下列說法:
①四邊形AEDF是平行四邊形;
②如果∠BAC=90°,那么四邊形AEDF是矩形;
③如果AD平分∠BAC,那么四邊形AEDF是菱形;
④如果∠BAC=90°,AD平分∠BAC,那么四邊形AEDF是正方形.
其中正確的是______(只填寫序號).
科目:初中數學 來源: 題型:
【題目】“五一勞動節(jié)大酬賓!”,某商場設計的促銷活動如下:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“50元”的字樣.規(guī)定:在本商場同一日內,顧客每消費滿300元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回).商場根據兩小球所標金額的和返還相等價格的購物券,購物券可以在本商場消費.某顧客剛好消費300元.
(1)該顧客至多可得到元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于50元的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD是∠BAC的平分線,AD的垂直平分線分別交AB于點F,交BC的延長線于點E.
求證:(1)∠EAD=∠EDA;
(2)DF∥AC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,點A、B在x軸上,AB⊥BC,AO=OB=2,BC=3
(1)寫出點A、B、C的坐標.
(2)如圖②,過點B作BD∥AC交y軸于點D,求∠CAB+∠BDO的大小.
(3)如圖③,在圖②中,作AE、DE分別平分∠CAB、∠ODB,求∠AED的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在括號中填寫理由.如圖,已知∠B+∠BCD=180°,∠B=∠D.求證:∠E=∠DFE.
證明:∵∠B+∠BCD=180°( )
∴AB∥CD ( )
∴∠B= ( )
又∵∠B=∠D(已知 ),
∴∠D= ( )
∴AD∥BE( )
∴∠E=∠DFE( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明到某服裝商場進行社會調查,了解到該商場為了激勵營業(yè)員的工作積極性,實行“月總收入=基本工資+計件獎金”的方法,并獲得如下信息:
營業(yè)員A:月銷售件數200件,月總收入3400元;
營業(yè)員B:月銷售件數300件,月總收入3700元;
假設營業(yè)員的月基本工資為x元,銷售每件服裝獎動y元.
(1)求x和y的值;
(2)商場為了多銷售服裝,對顧客推薦一種購買方式:如果購買甲服裝3件,乙服裝2件,丙服袋1件共需390元:如果購買甲服裝1件,乙服裝2件,丙服裝3件共需370元.某顧客想購買甲、乙、丙服裝各一件共需多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A:(1,0).A(1,-1),A(-1,-l).A (-1, 1), A (2, 1),...則點A的坐標是( )
A.(506,505)B.(-505,-505)C.(505,-505)D.(-505,505)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D是BC延長線上的一點,線段BD的垂直平分線EG交AB于點E,交BD于點G.
(1)當∠B=30°時,AE和EF有什么關系?請說明理由.
(2)當點D在BC的延長線上(CD<BC)運動時,點E是否在線段AF的垂直平分線上?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=2x+6與反比例函數y= (k>0)的圖象交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數的圖象于點M,交AB于點N,連接BM.
(1)求m的值和反比例函數的表達式;
(2)直線y=n沿y軸方向平移,當n為何值時,△BMN的面積最大?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com