拋物線交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線的對稱軸為直線x =-1,B(1,0),C(0,-3).

【小題1】求二次函數(shù)的解析式;
【小題2】求使y≥0的x的取值范圍;
【小題3】在拋物線對稱軸上是否存在點(diǎn)P,使點(diǎn)C到點(diǎn)P和到直線的距離相等?若存在,求出點(diǎn)P坐標(biāo);若不存在,請說明理由
p;【答案】
【小題1】∵ A、B兩點(diǎn)關(guān)于對稱軸對稱,
∴ 點(diǎn)A(-3,0).
 
于是有 
解得:c=-3.
二次函數(shù)的解析式是:
【小題2】由(1)知拋物線過A、B兩點(diǎn),又開口向上,           
∴當(dāng)x ≤-3或x≥1時(shí),拋物線在x軸上方,
∴當(dāng)x ≤-3或x≥1時(shí),y≥0.
【小題3】存在.
設(shè)點(diǎn)P 的坐標(biāo)為(-1,),
則PC2=(+3)2+12
又點(diǎn)C到直線的距離為,
∴(+3)2+12
解得 12
∴點(diǎn)P的坐標(biāo)是(-1,),(-1,)解析:
p;【解析】略
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,圓M經(jīng)過原點(diǎn)O,且與x軸、y軸分別相交于A(-6,0)、B(0,-8精英家教網(wǎng))兩點(diǎn).
(1)求出直線AB的函數(shù)解析式;
(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點(diǎn)M,頂點(diǎn)C在⊙M上,開口向下,且經(jīng)過點(diǎn)B,求此拋物線的函數(shù)解析式;
(3)設(shè)(2)中的拋物線交x軸于D、E兩點(diǎn),在拋物線上是否存在點(diǎn)P,使得S△PDE=
115
S△ABC?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,以A為頂點(diǎn)的拋物線交y軸于點(diǎn)B.
(1)求這個(gè)拋物線的解析式;
(2)求出這個(gè)拋物線與x軸的交點(diǎn)坐標(biāo);
(3)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),拋物線交y軸于點(diǎn)C(0,3),點(diǎn)D為拋物線的頂點(diǎn).直線y=x-1交拋物線于點(diǎn)M、N兩點(diǎn),過線段MN上一點(diǎn)P作y軸的平行線交拋物線于點(diǎn)Q.
(1)求此拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)問點(diǎn)P在何處時(shí),線段PQ最長,最長為多少;
(3)設(shè)E為線段OC上的三等分點(diǎn),連接EP,EQ,若EP=EQ,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知對稱軸為直線x=4的拋物線交x軸于點(diǎn)A、B(點(diǎn)A在B左側(cè)),且點(diǎn)B坐標(biāo)為(6,0),過點(diǎn)B的直線交拋物線于點(diǎn)C(3,4).
(1)寫出點(diǎn)A坐標(biāo);
(2)求拋物線解析式;
(3)若點(diǎn)P在拋物線的BC段上,則x軸上時(shí)否存在點(diǎn)Q,使得以Q、B、P、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請分別求出點(diǎn)P、Q坐標(biāo);若不存在,請說明理由;
(4)若點(diǎn)M在線段AB上以每秒1個(gè)單位長度的速度從A向B運(yùn)動,同時(shí),點(diǎn)N在射線BC上以每秒2個(gè)單位長度的速度從B向C運(yùn)動,當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動時(shí)間為t秒,當(dāng)t為何值,以M、N、B為頂點(diǎn)的三角形與△ABC相似,寫出計(jì)算過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2+bx+3交x軸于點(diǎn)A(x1,0)、B(-1,0)且x1>0,AO2+BO2=10,拋物線交y軸于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求拋物線的解析式;
(2)證明△ADC是直角三角形;
(3)第一象限內(nèi),在拋物線上是否存在一點(diǎn)E,使∠ECO=∠ACB?若存在,求出點(diǎn)E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案