當(dāng)x為任意實(shí)數(shù)時(shí),下列分式中一定有意義的一個(gè)是   (      )

A.                     B.

C.                  D.

 

答案:C
提示:

只有C項(xiàng)的分母可以保證絕對(duì)不為零,A項(xiàng)當(dāng)x0時(shí)無意義,B項(xiàng)當(dāng)1時(shí)無意義,D    項(xiàng)當(dāng)x=-1時(shí)無意義。

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b
≥0,∴a+b≥2
ab
,只有當(dāng)a=b時(shí),等號(hào)成立.
結(jié)論:在a+b≥2
ab
(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時(shí),a+b有最小值2
p
.   
根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m=
 
時(shí),m+
1
m
有最小值
 
;
若m>0,只有當(dāng)m=
 
時(shí),2m+
8
m
有最小值
 

(2)如圖,已知直線L1y=
1
2
x+1
與x軸交于點(diǎn)A,過點(diǎn)A的另一直線L2與雙曲線y=
-8
x
(x>0)
相交于點(diǎn)B(2,m),求直線L2的解析式.
(3)在(2)的條件下,若點(diǎn)C為雙曲線上任意一點(diǎn),作CD∥y軸交直線L1于點(diǎn)D,試求當(dāng)線段CD最短精英家教網(wǎng)時(shí),點(diǎn)A、B、C、D圍成的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀學(xué)習(xí)下材料,并完成下面的兩個(gè)小題.
在我們的和諧互助學(xué)習(xí)課堂上,老師跟一個(gè)小組的同學(xué)在進(jìn)行激烈的討論.下面是他們的對(duì)話:
小卉:對(duì)于任意實(shí)數(shù)a的平方是非負(fù)數(shù).
小銘:對(duì)呀,也就是說a平方最小是0.即:a2≥0,當(dāng)a=0時(shí),a2=0
小紅:如果a2+b2=0,那么必有a=0且b=0,如果其中一個(gè)不為0,原等式就不成立.
老師:你們的觀點(diǎn)都是正確的.
(1)當(dāng)x=
-1
-1
,時(shí),多項(xiàng)式x2+2x+1取得最小值為
0
0
.(直接填上結(jié)果)    
(2)如果x2+2x+y2-6y+10=0,求(x+y)-2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

實(shí)踐與探究:

對(duì)于任意正實(shí)數(shù)a、b,∵≥0, ∴≥0,∴

只有當(dāng)a=b時(shí),等號(hào)成立。

結(jié)論:在(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時(shí),a+b有最小值。   根據(jù)上述內(nèi)容,回答下列問題:

(1)若m>0,只有當(dāng)m=       時(shí),有最小值         ;

若m>0,只有當(dāng)m=       時(shí),2有最小值        .

(2)如圖,已知直線L1與x軸交于點(diǎn)A,過點(diǎn)A的另一直線L2與雙曲線相交于點(diǎn)B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點(diǎn)C為雙曲線上任意一點(diǎn),作CD∥y軸交直線L1

于點(diǎn)D,試求當(dāng)線段CD最短時(shí),點(diǎn)A、B、C、D圍成的四邊形面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省江陰華士片八年級(jí)下學(xué)期期中考試數(shù)學(xué)卷(帶解析) 題型:解答題

閱讀理解:對(duì)于任意正實(shí)數(shù)ab,∵()2≥0,∴a-2b≥0,∴ab≥2,只有當(dāng)ab時(shí),等號(hào)成立.
結(jié)論:在ab≥2a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2,只有當(dāng)ab時(shí),ab有最小值2.  根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m      時(shí),m有最小值        ;
m>0,只有當(dāng)m      時(shí),2m有最小值       .
(2)如圖,已知直線L1:y=x+1與x軸交于點(diǎn)A,過點(diǎn)A的另一直線L2與雙曲線y=
x>0)相交于點(diǎn)B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點(diǎn)C為雙曲線上任意一點(diǎn),作CDy軸交直線L1于點(diǎn)D,試
求當(dāng)線段CD最短時(shí),點(diǎn)A、B、C、D圍成的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省江陰華士片八年級(jí)下學(xué)期期中考試數(shù)學(xué)卷(解析版) 題型:解答題

閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵()2≥0,∴a-2b≥0,∴ab≥2,只有當(dāng)ab時(shí),等號(hào)成立.

結(jié)論:在ab≥2ab均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2,只有當(dāng)ab時(shí),ab有最小值2.   根據(jù)上述內(nèi)容,回答下列問題:

(1)若m>0,只有當(dāng)m       時(shí),m有最小值         ;

m>0,只有當(dāng)m       時(shí),2m有最小值        .

(2)如圖,已知直線L1:y=x+1與x軸交于點(diǎn)A,過點(diǎn)A的另一直線L2與雙曲線y=

x>0)相交于點(diǎn)B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點(diǎn)C為雙曲線上任意一點(diǎn),作CDy軸交直線L1于點(diǎn)D,試

求當(dāng)線段CD最短時(shí),點(diǎn)A、BC、D圍成的四邊形面積.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案