(2007•中山)如圖,已知⊙O的直徑AB垂直弦CD于點E,連接CO并延長交AD于點F,若CF⊥AD,AB=2,求CD的長.

【答案】分析:⊙O的直徑AB垂直弦CD于點E,則CD=2CE;在直角△OED中,易證∠ODC=30度,就可以求出DE的長,進而求出CD的長.
解答:解:在△AOF和△COE中,
∠AFO=∠CEO=90°,
∠AOF=∠COE,所以∠A=∠C,(1分)
連接OD,則∠A=∠ODA,∠C=∠ODC,(2分)
所以∠A=∠ODA=∠ODC,(3分)
因為∠A+∠ODA+∠ODC=90°,
所以∠ODC=30°,(4分)
所以DE=OD×cos30°=,(5分)
CD=2DE=.                                           (6分)
點評:此題主要考查了垂徑定理、圓周角定理以及解直角三角形,求出∠ODC=30°是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《四邊形》(06)(解析版) 題型:解答題

(2007•中山)如圖,在直角坐標系中,已知矩形OABC的兩個頂點坐標A(3,0),B(3,2),對角線AC所在直線為l,求直線l對應(yīng)的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2007•中山)如圖,在直角坐標系xOy中,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象交于A(1,4)、B(3,m)兩點.
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省溫州市六校聯(lián)考中考數(shù)學三模試卷(解析版) 題型:解答題

(2007•中山)如圖,在直角坐標系xOy中,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象交于A(1,4)、B(3,m)兩點.
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年廣東省中考數(shù)學試卷(解析版) 題型:解答題

(2007•中山)如圖,在直角坐標系xOy中,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象交于A(1,4)、B(3,m)兩點.
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年廣東省汕頭市中考數(shù)學試卷(解析版) 題型:解答題

(2007•中山)如圖,在直角坐標系中,已知矩形OABC的兩個頂點坐標A(3,0),B(3,2),對角線AC所在直線為l,求直線l對應(yīng)的函數(shù)解析式.

查看答案和解析>>

同步練習冊答案