(1)證明:∵四邊形ABCD是菱形,
∴AD=AB,∠ABD=∠CBD=
∠ABC,AD∥BC,
∵∠A=60°,
∴△ABD是等邊三角形,∠ABC=120°,
∴AD=BD,∠CBD=∠A=60°,
∵AP=BQ,
∴△BDQ≌△ADP(SAS);
(2)解:過點Q作QE⊥AB,交AB的延長線于E,
∵BQ=AP=2,
∵AD∥BC,
∴∠QBE=60°,
∴QE=QB•sin60°=2×
=
,BE=QB•cos60°=2×
=1,
∵AB=AD=3,
∴PB=AB-AP=3-2=1,
∴PE=PB+BE=2,
∴在Rt△PQE中,PQ=
=
,
∴cos∠BPQ=
=
=
.
分析:(1)由四邊形ABCD是菱形,可證得AD=AB,∠ABD=∠CBD=
∠ABC,AD∥BC,又由∠A=60°,易得△ABD是等邊三角形,然后由SAS即可證得△BDQ≌△ADP;
(2)首先過點Q作QE⊥AB,交AB的延長線于E,然后由三角函數(shù)的性質(zhì),即可求得PE與QE的長,又由勾股定理,即可求得PQ的長,則可求得cos∠BPQ的值.
點評:此題考查了菱形的性質(zhì)與勾股定理、三角函數(shù)的性質(zhì).此題難度適中,解題的關(guān)鍵是數(shù)形結(jié)合思想的應(yīng)用.