【題目】有5張看上去無差別的卡片,正面分別寫著1,2,3,4,5,洗勻后正面向下放在桌子上,從中隨機抽取2張,抽出的卡片上的數字恰好是兩個連續(xù)整數的概率是 .
【答案】
【解析】解:列表如下:
1 | 2 | 3 | 4 | 5 | |
1 | ﹣﹣﹣ | (2,1) | (3,1) | (4,1) | (5,1) |
2 | (1,2) | ﹣﹣﹣ | (3,2) | (4,2) | (5,2) |
3 | (1,3) | (2,3) | ﹣﹣﹣ | (4,3) | (5,3) |
4 | (1,4) | (2,4) | (3,4) | ﹣﹣﹣ | (5,4) |
5 | (1,5) | (2,5) | (3,5) | (4,5) | ﹣﹣﹣ |
所有等可能的情況有20種,其中恰好是兩個連續(xù)整數的情況有8種,
則P(恰好是兩個連續(xù)整數)= = ,
所以答案是:
【考點精析】通過靈活運用列表法與樹狀圖法,掌握當一次試驗要設計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結果,通常采用樹狀圖法求概率即可以解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,將透明三角形紙片PAB的直角頂點P落在第四象限,頂點A、B分別落在反比例函數y= 圖象的兩支上,且PB⊥x于點C,PA⊥y于點D,AB分別與x軸,y軸相交于點E、F.已知B(1,3).
(1)k=;
(2)試說明AE=BF;
(3)當四邊形ABCD的面積為 時,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△AOB為等腰三角形,頂點A的坐標(2, ),底邊OB在x軸上.將△AOB繞點B按順時針方向旋轉一定角度后得△A′O′B,點A的對應點A′在x軸上,則點O′的坐標為( )
A.( , )
B.( , )
C.( , )
D.( ,4 )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y= x2﹣x+a與x軸交于點A,B,與y軸交于點C,其頂點在直線y=﹣2x上.
(1)求a的值;
(2)求A,B的坐標;
(3)以AC,CB為一組鄰邊作ACBD,則點D關于x軸的對稱點D′是否在該拋物線上?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣(m+1)x+ (m2+1)=0有實數根.
(1)求m的值;
(2)先作y=x2﹣(m+1)x+ (m2+1)的圖象關于x軸的對稱圖形,然后將所作圖形向左平移3個單位長度,再向上平移2個單位長度,寫出變化后圖象的解析式;
(3)在(2)的條件下,當直線y=2x+n(n≥m)與變化后的圖象有公共點時,求n2﹣4n的最大值和最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.
(1)求此拋物線的解析式;
(2)直接寫出點C和點D的坐標;
(3)若點P在第一象限內的拋物線上,且S△ABP=4S△COE , 求P點坐標. 注:二次函數y=ax2+bx+c(a≠0)的頂點坐標為(﹣ , )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,PA、PB是⊙O的切線,A、B為切點,∠APB=60°,連接PO并延長與⊙O交于C點,連接AC,BC.
(1)求證:四邊形ACBP是菱形;
(2)若⊙O半徑為1,求菱形ACBP的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com