作圖:在直線CD上,作出點(diǎn)P,分別滿足下列條件(保留作圖痕跡)
(1)使PA+PB最短  
   
(2)使PA=PB    
  

(3)使PA+PB最短

解:(1)如圖①,連接AB,交CD與點(diǎn)P,P即為所求;

(2)如圖②,連接AB,作AB的垂直平分線交CD與點(diǎn)P,P即為所求;
(3)如圖③,作點(diǎn)A關(guān)于直線CD的對(duì)稱點(diǎn)A′,連接A′B交直線CD于P,P即為所求.
分析:(1)根據(jù)兩點(diǎn)之間線段最短,連接AB即可;
(2)根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可作AB的垂直平分線交CD與點(diǎn)P;
(3)要使PA+PB最短,根據(jù)同一平面內(nèi)線段最短,可知要作點(diǎn)A關(guān)于直線CD的對(duì)稱點(diǎn)A′,連接A′B交直線CD于P.
點(diǎn)評(píng):此題主要考查了應(yīng)用與設(shè)計(jì)作圖,首先要理解題意,弄清問(wèn)題中對(duì)所作圖形的要求,結(jié)合對(duì)應(yīng)幾何圖形的性質(zhì)和基本作圖的方法作圖.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、作圖:在直線CD上,作出點(diǎn)P,分別滿足下列條件(保留作圖痕跡)
(1)使PA+PB最短           
(2)使PA=PB              
(3)使PA+PB最短

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•下關(guān)區(qū)一模)如圖1,已知矩形ABCD中,AB=5,AD=4,點(diǎn)M在線段CD上,連接AM.把矩形沿一條直線EF折疊,使點(diǎn)A與點(diǎn)M重合.

(1)作出直線EF (保留作圖痕跡,不寫作法);
(2)當(dāng)直線EF經(jīng)過(guò)點(diǎn)B時(shí),連接BM,求△BCM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)觀察發(fā)現(xiàn):
如(a)圖,若點(diǎn)A,B在直線l同側(cè),在直線l上找一點(diǎn)P,使AP+BP的值最。
做法如下:作點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)B',連接AB',與直線l的交點(diǎn)就是所求的點(diǎn)P.再如(b)圖,在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最。
做法如下:作點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+PE的最小值為
 

(2)實(shí)踐運(yùn)用:
如(c)圖,已知⊙O的直徑CD為4,∠AOD的度數(shù)為60°,點(diǎn)B是
AD
的中點(diǎn),在直徑CD上找一點(diǎn)P,使BP+AP的值最小,并求BP+AP的最小值.
(3)拓展延伸:
如(d)圖,在四邊形ABCD的對(duì)角線AC上找一點(diǎn)P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)數(shù)學(xué)來(lái)源于生活又服務(wù)于生活,利用數(shù)學(xué)中的幾何知識(shí)可以幫助我們解決許多實(shí)際問(wèn)題.李明準(zhǔn)備與朋友合伙經(jīng)營(yíng)一個(gè)超市,經(jīng)調(diào)查發(fā)現(xiàn)他家附近有兩個(gè)大的居民區(qū)A、B,同時(shí)又有相交的兩條公路,李明想把超市建在到兩居民區(qū)的距離、到兩公路距離分別相等的位置上,繪制了如圖一的居民區(qū)和公路的位置圖.聰明的你一定能用所學(xué)的數(shù)學(xué)知識(shí)幫助李明在圖上確定超市的位置!請(qǐng)用尺規(guī)作圖確定超市P的位置.(寫出已知、求作,作圖不寫作法,但要求保留作圖痕跡.)
(2)如圖二,O為平行四邊形ABCD的對(duì)角線AC的中點(diǎn),過(guò)點(diǎn)O作一條直線分別與AB、CD交于點(diǎn)M、N,點(diǎn)E、F在直線MN上,且OE=OF.
①圖中共有幾對(duì)全等三角形,請(qǐng)把它們都寫出;
②求證:∠MAE=∠NCF.

查看答案和解析>>

同步練習(xí)冊(cè)答案