如圖,扇形ODE的圓心角為120°,正三角形ABC的中心恰好為扇形ODE的圓心,且點B在扇形ODE內(nèi)
(1)請連接OA、OB,并證明△AOF≌△BOG;
(2)求證:△ABC與扇形ODE重疊部分的面積等于△ABC面積的
1
3

證明:(1)如圖,連接OA、OB,設OD交AB于F,OE交BC于G,
∵O是正三角形的中心,
∴OA=OB,∠OAF=∠OBG,∠AOB=120°,
∴∠AOF=120°-∠BOF,
∠BOG=120°-∠BOF,
∴∠AOF=∠BOG,
在△AOF和△BOG中
∠OAF=∠OBG
OA=OB
∠AOF=∠BOG
,
∴△AOF≌△BOG(ASA),

(2)當扇形的圓心角為120°時,△ABC與扇形重疊部分的面積,總等于△ABC的面積的
1
3

證明如下:
①當扇形的圓心角與正三角形的中心角重合時:
顯然,△ABC與扇形重疊部分的面積等于△ABC的面積的
1
3
;
②當扇形的圓心角與正三角形的中心角不重合時:
根據(jù)(1)中△AOF≌△BOG(ASA),
即S四邊形OFBG=S△AOB=
1
3
S△ABC,
即△ABC與扇形重疊部分的面積,總等于△ABC的面積的
1
3
,
同理可證,當扇形ODE旋轉至其他位置時,結論仍成立.
由①、②可知,當扇形的圓心角為120°時,△ABC與扇形重疊部分的面積,總等于△ABC的面積的
1
3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

若等腰三角形有一個內(nèi)角是60°,此三角形的一邊長是a,則此三角形的周長是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

Rt△AOB中,∠AOB=90°,∠ABO=30°,BO=4,分別以OA,OB邊所在的直線建立平面直角坐標系,D點為x軸正半軸上的一點,以OD為一邊在第一象限內(nèi)做等邊△ODE.
(1)如圖(1),當E點恰好落在線段AB上,求E點坐標;
(2)在(1)問的條件下,將△ODE在線段OB上向右平移如圖,圖中是否存在一條與線段OO′始終相等的線段?如果存在,請指出這條線段,并加以證明;如果不存在,請說明理由;
(3)若點D從原點出發(fā)沿x軸正方向移動,設點D到原點的距離為x,△ODE與△AOB重疊部分的面積為y,請直接寫出y與x的函數(shù)關系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將邊長分別為2、4、6的三個正三角形按如圖方式排列,A、B、C、D在同一直線上,則圖中陰影部分的面積的和為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知等邊三角形△ABC和點P,過點P作三邊AB、AC、BC的平行線分別交AC、BC、AB于F、G、E,如圖①,點P在BC邊上可得PE+PF+PG=BC.當點P在△ABC內(nèi)部時(如圖②),點P在△ABC外部時如圖③,這兩種情況下是否還存在PE+PF+PG=BC的結論?若成立請給予證明,若不成立,那么PE、PF、PG與BC又有怎樣的關系,請寫出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在一個正方體的兩個面上畫了兩條對角線AB,AC,那么這兩條對角線的夾角等于______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,△ABC和△ECD均為等邊三角形,B、C、D三點共線,AD與BE交于點O.求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在等邊三角形ABC的邊BA,CB,AC的延長線上分別截取AA′=BB′=CC′,那么△A′B′C′是______三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在等邊三角形ABC中,BD平分∠ABC交AC于點D,過點D作DE⊥BC于E,且EC=1,則BC的長______.

查看答案和解析>>

同步練習冊答案