如圖,在菱形ABCD中,過A作AE⊥BC于E,P為AB上一動(dòng)點(diǎn),已知cosB=,EC=8,則線段PE的長度最小值為   
【答案】分析:先設(shè)BE=x,易知BC=x+8,利用菱形的性質(zhì)可知AB=BC=x+8,在Rt△ABE中,結(jié)合cosB=以及余弦的計(jì)算可得x=×(x+8),易求x,據(jù)圖可知點(diǎn)E到線段AB的最小距離應(yīng)該是過E作AB的垂線段的長度,再過E作EP⊥AB于P,在Rt△BPE中,再利用三角函數(shù)可求PE.
解答:解:設(shè)BE=x,那么BC=x+8,
∵四邊形ABCD是菱形,
∴AB=BC=x+8,
又∵cosB=,AE⊥BC,
∴BE=cosB•AB,
即x=×(x+8),
解得x=5,
點(diǎn)E到線段AB的最小距離應(yīng)該是過E作AB的垂線段的長度,
那么,先過E作EP⊥AB于P,
在Rt△BPE中,PE=•BE=×5=
故答案是
點(diǎn)評:本題考查了菱形的性質(zhì)、解直角三角形、垂線段最短.解題的關(guān)鍵是求出BE的長,注意sinB=
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:在菱形ABCD中,AC=6,BD=8,則菱形的邊長為( 。
A、5B、10C、6D、8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在菱形ABCD中,∠ABC=60°,E為AB邊的中點(diǎn),P為對角線BD上任意一點(diǎn),AB=4,則PE+PA的最小值為
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•河南)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn).點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長ME交射線CD于點(diǎn)N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為
1
1
時(shí),四邊形AMDN是矩形;
           ②當(dāng)AM的值為
2
2
時(shí),四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•攀枝花)如圖,在菱形ABCD中,DE⊥AB于點(diǎn)E,cosA=
35
,BE=4,則tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在菱形ABCD中,AE⊥BC,垂足為F,EC=1,∠B=30°,求菱形ABCD的周長.

查看答案和解析>>

同步練習(xí)冊答案