已知a+數(shù)學(xué)公式=5,分別求a2+數(shù)學(xué)公式,(a-數(shù)學(xué)公式2的值.

解:∵a+=5,
∴(a+2=a2++2=25,
則a2+=23,
(a-2=a2+-2=23-2=21.
分析:先由a+=5,求出a2+=23,再把(a-2按完全平方公式展開,把a(bǔ)2+的值代入即可.
點(diǎn)評:本題考查了完全平方公式,熟記公式的幾個(gè)變形公式對解題大有幫助.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、在正方形ABCD中,已知點(diǎn)E、F分別在邊AD、DC的延長線上,且DE=CF,連接BE、AF相交于點(diǎn)P,(如圖1)
(1)試說明:AF=BE;
(2)求∠BPF的度數(shù);
(3)若將正方形ABCD變?yōu)榈妊菪蜛BCD,且AD∥BC,AB=AD=DC,∠BCD=50°,其它條件不變(如圖2),求∠BPF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•新華區(qū)一模)我們知道:根據(jù)二次函數(shù)的圖象,可以直接確定二次函數(shù)的最大(。┲担桓鶕(jù)“兩點(diǎn)之間,線段最短”,并運(yùn)用軸對稱的性質(zhì),可以在一條直線上找到一點(diǎn),使得此點(diǎn)到這條直線同側(cè)兩定點(diǎn)之間的距離之和最短.
這種數(shù)形結(jié)合的思想方法,非常有利于解決一些數(shù)學(xué)和實(shí)際問題中的最大(。┲祮栴}.請你嘗試解決一下問題:
(1)在圖1中,拋物線所對應(yīng)的二次函數(shù)的最大值是
4
4

(2)在圖2中,相距3km的A、B兩鎮(zhèn)位于河岸(近似看做直線l)的同側(cè),且到河岸的距離AC=1千米,BD=2千米,現(xiàn)要在岸邊建一座水塔,分別直接給兩鎮(zhèn)送水,為使所用水管的長度最短,請你:
①作圖確定水塔的位置;
②求出所需水管的長度(結(jié)果用準(zhǔn)確值表示)
(3)已知x+y=6,求
x2+9
+
y2+25
的最小值;
此問題可以通過數(shù)形結(jié)合的方法加以解決,具體步驟如下:
①如圖3中,作線段AB=6,分別過點(diǎn)A、B,作CA⊥AB,DB⊥AB,使得CA=
3
3
,DB=
5
5
;
②在AB上取一點(diǎn)P,可設(shè)AP=
x
x
,BP=
y
y
;
x2+9
+
y2+25
的最小值即為線段
PC
PC
和線段
PD
PD
長度之和的最小值,最小值為
10
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)A,B分別在x軸和y軸上,且OA=OB=3
2
,點(diǎn)C的坐標(biāo)是C(
7
2
2
,
7
2
2
)AB與OC相交于點(diǎn)G.點(diǎn)P從O出發(fā)以每秒1個(gè)單位的速度從O運(yùn)動(dòng)到C,過P作直線EF∥AB分別交OA,OB或BC,AC于E,F(xiàn).解答下列問題:
(1)直接寫出點(diǎn)G的坐標(biāo)和直線AB的解析式.
(2)若點(diǎn)P運(yùn)動(dòng)的時(shí)間為t,直線EF在四邊形OACB內(nèi)掃過的面積為s,請求出s與t的函數(shù)關(guān)系式;并求出當(dāng)t為何值時(shí),直線EF平分四邊形OACB的面積.
(3)設(shè)線段OC的中點(diǎn)為Q,P運(yùn)動(dòng)的時(shí)間為t,求當(dāng)t為何值時(shí),△EFQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:遼寧省月考題 題型:解答題

已知a+=5,分別求a2+,(a﹣2的值.

查看答案和解析>>

同步練習(xí)冊答案