閱讀理解:
在解形如3|x-2|=|x-2|+4這一類含有絕對(duì)值的方程時(shí),我們可以根據(jù)絕對(duì)值的意義分x<2和x≥2兩種情況討論:
①當(dāng)x<2時(shí),原方程可化為-3(x-2)=-(x-2)+4,解得:x=0,符合x<2
②當(dāng)x≥2時(shí),原方程可化為3(x-2)=(x-2)+4,解得:x=4,符合x≥2
∴原方程的解為:x=0,x=4.
解題回顧:本題中2為x-2的零點(diǎn),它把數(shù)軸上的點(diǎn)所對(duì)應(yīng)的數(shù)分成了x<2和x≥2兩部分,所以分x<2和x≥2兩種情況討論.
知識(shí)遷移:
(1)運(yùn)用整體思想先求|x-3|的值,再去絕對(duì)值符號(hào)的方法解方程:|x-3|+8=3|x-3|;
知識(shí)應(yīng)用:
(2)運(yùn)用分類討論先去絕對(duì)值符號(hào)的方法解類似的方程:|2-x|-3|x+1|=x-9.
提示:本題中有兩個(gè)零點(diǎn),它們把數(shù)軸上的點(diǎn)所對(duì)應(yīng)的數(shù)分成了幾部分呢?
分析:(1)先把|x-3|-3|x-3|=-8看作是關(guān)于|x-3|的一元一次方程,可解得|x-3|=4,再去絕對(duì)值得到x-3=±4,然后解兩個(gè)一元一次方程即可;
(2)2-x的零點(diǎn)為2,x+1的零點(diǎn)為-1,這樣分三個(gè)區(qū)間進(jìn)行討論:當(dāng)x≤-1;當(dāng)-1<x≤2;當(dāng)-1<x≤2;在各區(qū)間分別去絕對(duì)值化為一元一次方程,解方程,然后得到滿足條件的x的值.
解答:解:(1)移項(xiàng)得|x-3|-3|x-3|=-8,
合并得-2|x-3|=-8,
兩邊除以-2得|x-3|=4,
所以x-3=±4,
∴x=-1或7;
(2)當(dāng)x≤-1,原方程可化為2-x+3(x+1)=x-9,解得x=-14,符合x≤-1;
當(dāng)-1<x≤2,原方程可化為2-x-3(x+1)=x-9,解得x=
8
5
,符合-1<x≤2;
當(dāng)x>2,原方程可化為-2+x+3(x+1)=x-9,解得x=
4
3
,不符合x>2;
∴原方程的解為x=-14或x=
8
5
點(diǎn)評(píng):本題考查了含絕對(duì)值符號(hào)的一元一次方程:運(yùn)用分類討論的方法把含絕對(duì)值的一元一次方程化為一元一次方程求解或運(yùn)用整體思想求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)活用知識(shí),解決問(wèn)題.
(1)輪船順?biāo)叫?0千米所需時(shí)間和逆水航行30千米所需時(shí)間相等,已知水流速度為3千米/小時(shí),求輪船在靜水中的速度.
(2)將兩塊全等的含30°角的三角尺如圖(1)擺放在一起,設(shè)較短的直角邊為1
①四邊形ABCD是平行四邊形嗎?說(shuō)出你的結(jié)論和理由
 

②將Rt△BCD沿射線BD方向平移到Rt△B1C1D③位置,四邊形ABC1D1是平行邊邊形嗎?說(shuō)明你的結(jié)論和理由
 

③在Rt△BCD沿射線BD方向平移的過(guò)程中,當(dāng)B的移動(dòng)距離為
 
四邊形ABC1D1為矩形,其理由是
 


(3)閱讀理解:
解方程x4-3x2+2=0,設(shè)x2=y,則原方程可分為y2-3y+2=0,解得:y1=2,y2=1.
(1)當(dāng)y=2時(shí),x2=2,解得x=±
2

(2)當(dāng)y=1時(shí),x2=1,解題x=±1,故原方程的解是:x1=
2
,x2=-
2
,x3=1,x4=-1,請(qǐng)利用以上方法解方程:(x2-2x)2-2x2+4x-3=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

活用知識(shí),解決問(wèn)題.
(1)輪船順?biāo)叫?0千米所需時(shí)間和逆水航行30千米所需時(shí)間相等,已知水流速度為3千米/小時(shí),求輪船在靜水中的速度.
(2)將兩塊全等的含30°角的三角尺如圖(1)擺放在一起,設(shè)較短的直角邊為1
①四邊形ABCD是平行四邊形嗎?說(shuō)出你的結(jié)論和理由______;
②將Rt△BCD沿射線BD方向平移到Rt△B1C1D③位置,四邊形ABC1D1是平行邊邊形嗎?說(shuō)明你的結(jié)論和理由______;
③在Rt△BCD沿射線BD方向平移的過(guò)程中,當(dāng)B的移動(dòng)距離為_(kāi)_____四邊形ABC1D1為矩形,其理由是______.

(3)閱讀理解:
解方程x4-3x2+2=0,設(shè)x2=y,則原方程可分為y2-3y+2=0,解得:y1=2,y2=1.
(1)當(dāng)y=2時(shí),x2=2,解得x=±數(shù)學(xué)公式
(2)當(dāng)y=1時(shí),x2=1,解題x=±1,故原方程的解是:x1=數(shù)學(xué)公式,x2=-數(shù)學(xué)公式,x3=1,x4=-1,請(qǐng)利用以上方法解方程:(x2-2x)2-2x2+4x-3=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀理解:
在解形如3|x-2|=|x-2|+4這一類含有絕對(duì)值的方程時(shí),我們可以根據(jù)絕對(duì)值的意義分x<2和x≥2兩種情況討論:
①當(dāng)x<2時(shí),原方程可化為-3(x-2)=-(x-2)+4,解得:x=0,符合x<2
②當(dāng)x≥2時(shí),原方程可化為3(x-2)=(x-2)+4,解得:x=4,符合x≥2
∴原方程的解為:x=0,x=4.
解題回顧:本題中2為x-2的零點(diǎn),它把數(shù)軸上的點(diǎn)所對(duì)應(yīng)的數(shù)分成了x<2和x≥2兩部分,所以分x<2和x≥2兩種情況討論.
知識(shí)遷移:
(1)運(yùn)用整體思想先求|x-3|的值,再去絕對(duì)值符號(hào)的方法解方程:|x-3|+8=3|x-3|;
知識(shí)應(yīng)用:
(2)運(yùn)用分類討論先去絕對(duì)值符號(hào)的方法解類似的方程:|2-x|-3|x+1|=x-9.
提示:本題中有兩個(gè)零點(diǎn),它們把數(shù)軸上的點(diǎn)所對(duì)應(yīng)的數(shù)分成了幾部分呢?

查看答案和解析>>

同步練習(xí)冊(cè)答案