從下面兩個題目中任選一題作答:
(A題)折竹抵地
今有竹高一丈,末折抵地,去本三尺.問折者高幾何(如圖)
友情提醒:請寫出解答這首詩的方法和步驟.
(B題)海島算經(jīng)
三國魏人劉徽,自撰《海島算經(jīng)》,專論測高望遠.其中有一題,是數(shù)學史上有名的測量問題.今譯如下:如圖,要測量海島上一座山峰A的高度AH,立兩根高三丈的標桿BC和DE,兩竿相距BD=1000步,D、B、H成一線,從BC退行123步到F,人目著地觀察A,A、C、F三點共線;從DE退行127步到G,從G看A,A、E、G三點也共線.試算出山峰的高度AH及HB的距離.(古制1步=6尺,1里=180丈=1800尺=300步.結(jié)果用里和步來表示)
友情提醒:請寫出必要的算法和過程.
方法步驟:
A題:已知AC+AB=10(尺)①,
BC=3(尺),
AB2-AC2=BC2,
AB2-AC2=9,
(AB+AC)(AB-AC)=9,
AB-AC=
9
10
②,
①+②得:2AB=
109
10
?AB=
109
20
=5.45
(尺),
代入②得:AC=5.45-
9
10
=4.55(尺),
∴原處還有4.55尺高的竹子.

B題:∵AHBC,
∴△BCF△HAF,
BF
HF
=
BC
AH
,
又∵DEAH,
∴△DEG△HAG,
DG
HG
=
DE
AH
,
又∵BC=DE,
BF
HF
=
DG
HG
,
123
123+HB
=
127
127+1000+HB
,
∴BH=30750(步),
又∵
BF
HF
=
BC
AH
,
∴AH=
BC×HF
BF
,即AH=
5×(30750+123)
123
=1255(步).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

男孩戴維是城里的飛盤冠軍,戈里是城里最可惡的踩高蹺的人,兩人約定一比高低.戴維直立肩高1m,他投飛盤很有力,但需在13m內(nèi)才有威力;戈里踩高蹺時鼻子離地13m,他的鼻子是他唯一的弱點.戴維需離戈里多遠時才能擊中對方的鼻子而獲勝?( 。
A.7mB.8mC.6mD.5m

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,標有“玉”“海”“樓”三字的三個正方形圍成一個直角三角形,正方形“玉”“海”的面積分別為81、400,則圖中標有“樓”字的正方形面積是( 。
A.481B.329C.319D.300

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖是2002年8月在北京召開的國際數(shù)學家大會的會標,它取材于我國古代數(shù)學家趙爽的《勾股圓方圖》,由四個全等的直角三角形和一個小正方形的拼成的大正方形,如果大正方形的面積是13,小正方形的面積是1,直角三角形的較短邊為a,較長邊為b,那么(a+b)2的值是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,則AC等于( 。
A.6B.
6
C.
5
D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖是某居民小區(qū)的一塊直角三角形空地ABC,某斜邊AB=100米,直角邊AC=80米.現(xiàn)要利用這塊空地建一個矩形停車場DCFE,使得D點在BC邊上,E、F分別是AB、AC邊的中點.
(1)求另一條直角邊BC的長度;
(2)求停車場DCFE的面積;
(3)為了提高空地利用律,現(xiàn)要在剩余的△BDE中,建一個半圓形的花壇,使它的圓心在BE邊上,且使花壇的面積達到最大,請你在原圖中畫出花壇的草圖,求出它的半徑(不要求說明面積最大的理由),并求此時直角三角形空地ABC的總利用率是百分之幾(精確到1%).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,以Rt△ABC各邊為直徑的三個半圓圍成兩個新月形(陰影部分),已知AC=3cm,BC=4cm.則新月形(陰影部分)的面積和是______cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

同學們已清楚美麗的勾股樹的作法.現(xiàn)將勾股樹一段中的正方形全部換成等邊三角形,則得右圖,若圖中最大的直角三角形的斜邊為2cm,則如圖中所有的等邊三角形的面積之和是______cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

圖中字母A所在的正方形的面積是______.

查看答案和解析>>

同步練習冊答案