(2013•天津)已知反比例函數(shù)y=
kx
(k為常數(shù),k≠0)的圖象經(jīng)過點A(2,3).
(Ⅰ)求這個函數(shù)的解析式;
(Ⅱ)判斷點B(-1,6),C(3,2)是否在這個函數(shù)的圖象上,并說明理由;
(Ⅲ)當-3<x<-1時,求y的取值范圍.
分析:(1)把點A的坐標代入已知函數(shù)解析式,通過方程即可求得k的值.
(Ⅱ)只要把點B、C的坐標分別代入函數(shù)解析式,橫縱坐標坐標之積等于6時,即該點在函數(shù)圖象上;
(Ⅲ)根據(jù)反比例函數(shù)圖象的增減性解答問題.
解答:解:(Ⅰ)∵反比例函數(shù)y=
k
x
(k為常數(shù),k≠0)的圖象經(jīng)過點A(2,3),
∴把點A的坐標代入解析式,得
3=
k
2
,
解得,k=6,
∴這個函數(shù)的解析式為:y=
6
x


(Ⅱ)∵反比例函數(shù)解析式y(tǒng)=
6
x
,
∴6=xy.
分別把點B、C的坐標代入,得
(-1)×6=-6≠6,則點B不在該函數(shù)圖象上.
3×2=6,則點C中該函數(shù)圖象上;

(Ⅲ)∵當x=-3時,y=-2,當x=-1時,y=-6,
又∵k>0,
∴當x<0時,y隨x的增大而減小,
∴當-3<x<-1時,-6<y<-2.
點評:本題考查了反比例函數(shù)圖象的性質(zhì)、待定系數(shù)法求反比例函數(shù)解析式以及反比例函數(shù)圖象上點的坐標特征.用待定系數(shù)法求反比例函數(shù)的解析式,是中學階段的重點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•天津)如圖,已知∠C=∠D,∠ABC=∠BAD,AC與BD相交于點O,請寫出圖中一組相等的線段
AC=BD(答案不唯一)
AC=BD(答案不唯一)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•天津)已知直線l與⊙O,AB是⊙O的直徑,AD⊥l于點D.
(Ⅰ)如圖①,當直線l與⊙O相切于點C時,若∠DAC=30°,求∠BAC的大;
(Ⅱ)如圖②,當直線l與⊙O相交于點E、F時,若∠DAE=18°,求∠BAF的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•天津)在平面直角坐標系中,已知點A(-2,0),點B(0,4),點E在OB上,且∠OAE=∠0BA.
(Ⅰ)如圖①,求點E的坐標;
(Ⅱ)如圖②,將△AEO沿x軸向右平移得到△A′E′O′,連接A′B、BE′.
①設AA′=m,其中0<m<2,試用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時點E′的坐標;
②當A′B+BE′取得最小值時,求點E′的坐標(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•天津)已知拋物線y1=ax2+bx+c(a≠0)的對稱軸是直線l,頂點為點M.若自變量x和函數(shù)值y1的部分對應值如下表所示:
(Ⅰ)求y1與x之間的函數(shù)關系式;
(Ⅱ)若經(jīng)過點T(0,t)作垂直于y軸的直線l′,A為直線l′上的動點,線段AM的垂直平分線交直線l于點B,點B關于直線AM的對稱點為P,記P(x,y2).
(1)求y2與x之間的函數(shù)關系式;
(2)當x取任意實數(shù)時,若對于同一個x,有y1<y2恒成立,求t的取值范圍.
x -1 0 3
y1=ax2+bx+c 0
9
4
0

查看答案和解析>>

同步練習冊答案