如圖,△ABC是等邊三角形,點(diǎn)D是BC邊上任意一點(diǎn),DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,若BC=4,則BE+CF=  .

 

 

【答案】

2.

【解析】

試題分析:先設(shè)BD=x,則CD=4-x,根據(jù)△ABC是等邊三角形,得出∠B=∠C=60°,再利用三角函數(shù)求出ED和ED的長(zhǎng),即可得出DE+DF的值,由題,設(shè)BD=x,則CD=4-x,∵△ABC是等邊三角形,∴∠B=∠C=60°,∴ED=sin60°•BD,即ED=x,同理可得DF=,∴DE+DF=x+=2.

考點(diǎn):等邊三角形的性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,⊙O過(guò)點(diǎn)B,C,且與BA,CA的延長(zhǎng)線(xiàn)分別交于點(diǎn)D,E,弦DF精英家教網(wǎng)∥AC,EF的延長(zhǎng)線(xiàn)交BC的延長(zhǎng)線(xiàn)于點(diǎn)G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,△ABC是等邊三角形,過(guò)AB邊上一點(diǎn)D作BC的平行線(xiàn)交AC于E,則△ADE的三個(gè)內(nèi)角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,D為BC邊上的點(diǎn),∠BAD=15°,將△ABD繞點(diǎn)A點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)后到達(dá)△ACE的位置,那么旋轉(zhuǎn)角的度數(shù)是
60°
60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線(xiàn),點(diǎn)D在AC上,連結(jié)BD并延長(zhǎng)與CE交于點(diǎn)E.
(1)直接寫(xiě)出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案