如圖,把直線y=-2x向上平移后得到直線AB,直線AB經(jīng)過點(diǎn)(m,n),且2m+n=6,則直線AB的解析式是(   )
A.y=-2x-3B.y=-2x-6
C.y=-2x+3D.y=-2x+6
D
由題意可設(shè)直線AB的解析式是,將點(diǎn)(m,n),2m+n=6代入得,故選D
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知⊙的半徑為1,以為原點(diǎn),建立如圖所示的直角坐標(biāo)系.有一個正方形,頂點(diǎn)的坐標(biāo)為(,0),頂點(diǎn)軸上方,頂點(diǎn)在⊙上運(yùn)動.

(1)當(dāng)點(diǎn)運(yùn)動到與點(diǎn)、在一條直線上時(shí),與⊙相切嗎?如果相切,請說明理由,并求出所在直線對應(yīng)的函數(shù)表達(dá)式;如果不相切,也請說明理由;
(2)設(shè)點(diǎn)的橫坐標(biāo)為,正方形的面積為,求出的函數(shù)關(guān)系式,并求出的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將直線y=2x向上平移兩個單位,所得的直線是
A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,P為AB上一點(diǎn),且點(diǎn)P不與點(diǎn)A重合,過點(diǎn)P作PE⊥AB交AC邊上于E點(diǎn),點(diǎn)E不與點(diǎn)C重合,若AB=10,AC=8,設(shè)AP的長為x,四邊形PECB的周長為y,求y與x之間的函數(shù)關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形的邊長為10,點(diǎn)E在CB的延長線上,,點(diǎn)P在邊CD上運(yùn)動(C、D兩點(diǎn)除外),EP與AB相交于點(diǎn)F,若,四邊形的面積為,則關(guān)于的函數(shù)關(guān)系式是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)0為坐標(biāo)原點(diǎn),直線y=2x+4交x軸于點(diǎn)A,交y軸于點(diǎn)B,四邊形ABCO是平行四邊形,直線y=-x+m經(jīng)過點(diǎn)C,交x軸于點(diǎn)D.
(1)求m的值;
(2)點(diǎn)P(0,t)是線段OB上的一個動點(diǎn)(點(diǎn)P不與0,B兩點(diǎn)重合),過點(diǎn)P作x軸的平行線,分別交AB,0c,DC于點(diǎn)E,F(xiàn),G.設(shè)線段EG的長為d,求d與t之間的函數(shù)關(guān)系式 (直接寫出自變量t的取值范圍); (3)在(2)的條件下,點(diǎn)H是線段OB上一點(diǎn),連接BG交OC于點(diǎn)M,當(dāng)以O(shè)G為直徑的圓經(jīng)過點(diǎn)M時(shí),恰好使∠BFH=∠ABO.求此時(shí)t的值及點(diǎn)H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,是在同一坐標(biāo)系內(nèi)作出的一次函數(shù)y1、y2的圖象l1、l2,設(shè)y1=k1x+b1,y2=k2x+b2,則方程組的解是_______.
A、     B、C、     D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果一次函數(shù)y =(2-m)x+m-3的圖象經(jīng)過第二、三、四象限,那么m的取值范圍是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知一次函數(shù),函數(shù)隨著的增大而減小,且其圖象不經(jīng)過第一象限,則的取值范圍是()
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案