如圖,⊙O的直徑AB=18,AC和BD是它的兩條切線,CD與⊙O相切于E,且與AC、BD相交于點(diǎn)C、D,設(shè)
AC=x,BD=y,試求xy的值.
連接OC,OD.
∵AB=18,∴OA=OB=9,
∵AC和BD是它的兩條切線,
∴OA⊥AC,OB⊥BD,
∴ACBD,
∴∠ACD+∠BDE=180°,
∴∠OCD+∠ODC=90°,
∵AC=x,BD=y,
∴OC=
x2+81
,OD=
y2+81

∵CD是圓O的切線,
∴CE=AC=x,DE=BD=y,
∴OC2+OD2=CD2,
即x2+81+y2+81=(x+y)2,
整理得2xy=162,
∴xy=81.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線l1l2,⊙O與l1和l2分別相切于點(diǎn)A和點(diǎn)B.點(diǎn)M和點(diǎn)N分別是l1和l2上的動(dòng)點(diǎn),MN沿l1和l2平移.⊙O的半徑為1,∠1=60°.下列結(jié)論錯(cuò)誤的是( 。
A.MN=
4
3
3
B.l1和l2的距離為2
C.若∠MON=90°,則MN與⊙O相切
D.若MN與⊙O相切,則AM=
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,兩個(gè)同心圓,大圓半徑為5cm,小圓的半徑為3cm,若大圓的弦AB與小圓相交,則弦AB的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖,以Rt△ABC的斜邊AB為直徑作⊙0,D是BC上的點(diǎn),且有弧AC=弧CD,連CD、BD,在BD延長線上取一點(diǎn)E,使∠DCE=∠CBD.
(1)求證:CE是⊙0的切線;
(2)若CD=2
5
,DE和CE的長度的比為
1
2
,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知AB、AC分別為⊙O的直徑和弦,D為
BC
的中點(diǎn),DE垂直于AC的延長線于E,連接BC,若DE=6cm,CE=2cm,下列結(jié)論一定錯(cuò)誤的是( 。
A.DE是⊙O的切線B.直徑AB長為20cm
C.弦AC長為16cmD.C為
AD
的中點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AM和BN是它的兩條切線,DE切⊙O于點(diǎn)E,交AM與于點(diǎn)D,交BN于點(diǎn)C,F(xiàn)是CD的中點(diǎn),連接OF.
(1)求證:ODBE;
(2)猜想:OF與CD有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O的直徑AC=13,弦BC=12.過點(diǎn)A作直線MN,使∠BAM=
1
2
∠AOB.
(1)求證:MN是⊙O的切線;
(2)延長CB交MN于點(diǎn)D,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△AOB中,OA=OB=3
2
,⊙O的半徑為1,點(diǎn)P是AB邊上的動(dòng)點(diǎn),過點(diǎn)P作⊙O的一條切線PQ(點(diǎn)Q為切點(diǎn)),則切線PQ的最小值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O和⊙O′都經(jīng)過點(diǎn)A、B,點(diǎn)P在BA延長線上,過P作⊙O的割線PCD交⊙O于C、D兩點(diǎn),作⊙O′的切線PE切⊙O′于點(diǎn)E.若PC=4,CD=8,⊙O的半徑為5.
(1)求PE的長;
(2)求△COD的面積.

查看答案和解析>>

同步練習(xí)冊答案