【題目】如圖所示,在銳角三角形ABC中,AB8,AC5,BC6,沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,下列結論:①∠CBD=∠EBD,②DEAB,③三角形ADE的周長是7,④,⑤.其中正確的個數(shù)有(

A.2B.3C.4D.5

【答案】C

【解析】

根據(jù)翻折變換的性質得到DC=DE,BE=BC,,根據(jù)已知求出AE的長,根據(jù)三角形周長公式計算即可,根據(jù)高相等判斷 ,根據(jù)BCDBDE判斷的對錯,根據(jù)等高,則面積的比等于底邊的比判斷

根據(jù)翻折變換的性質得到DC=DE,BE=BC=6,

DEAB錯誤,即②錯誤

△BCD△BDE,

∴∠CBD∠EBD,正確;
AB=8,∴AE=AB-BE=2,
AED的周長為:AD+AE+DE=AC+AE=7,故③正確;

設三角形BCD的高為h,則三角形BAD的高也為h

,故④正確;

當三角形BCD的高為H,底邊為CD,則三角形BAD的高也為H,底邊為AD

,故正確.

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE90°,點AD、E在同一直線上,若AE24DE17

1)求證:△CAD≌△CBE;

2)求線段AB的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖.在Rt△ABCA=90°,AB=AC=4ERt△ABC邊上一點以每秒1單位的速度從點C出發(fā),沿著CAB的路徑運動到點B為止連接CE以點C為圓心,CE長為半徑作CC與線段BC交于點D設扇形DCE面積為S,E的運動時間為t則在以下四個函數(shù)圖象中,最符合扇形面積S關于運動時間t的變化趨勢的是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在中,,,,上的一點,,點點出發(fā)沿射線方向以每秒個單位的速度向右運動.設點的運動時間為.連結

1)當秒時,求的長度(結果保留根號);

2)當為等腰三角形時,求的值;

3)過點于點.在點的運動過程中,當為何值時,能使?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市舉行知識大賽,A校、B校各派出5名選手組成代表隊參加決賽,兩校派出選手的決賽成績如圖所示.

根據(jù)圖示填寫下表:

平均數(shù)

中位數(shù)

眾數(shù)

A

______

85

______

B

85

______

100

結合兩校成績的平均數(shù)和中位數(shù),分析哪個學校的決賽成績較好;

計算兩校決賽成績的方差,并判斷哪個學校代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD的對角線ACBD相交于點E,AD=DC,DC2=DEDB,求證:

(1)BCE∽△ADE;

(2)ABBC=BDBE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是反比例函數(shù)y=的圖象的一支.

(1)m的取值范圍,并在圖中畫出另一支的圖象

(2)m=-1,P(a,3)是雙曲線上的一點,PHy軸于H,將線段OP向右平移3PH的長度至O′P′,此時P的對應點P′恰好在另一條雙曲線y=的圖象上,則平移中線段OP掃過的面積為 ,k= .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在ABC中,ADBC邊上的高線,CEAB邊上的中線,DGCEG,CGEG

1)求證:CDAE;

2)若ADBD,CD2,則求ABD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了促進節(jié)能減排,倡導節(jié)約用電,某市將實行居民生活用電階梯電價方案,圖中折線反映了每戶每月用電電費y(元)與用電量x(度)間的函數(shù)關系式.

1)根據(jù)圖象,階梯電價方案分為三個檔次,填寫下表:

檔次

第一檔

第二檔

第三檔

每月用電量x(度)

0x≤140



2)小明家某月用電120度,需交電費

3)求第二檔每月電費y(元)與用電量x(度)之間的函數(shù)關系式;

4)在每月用電量超過230度時,每多用1度電要比第二檔多付電費m元,小剛家某月用電290度,交電費153元,求m的值.

查看答案和解析>>

同步練習冊答案