(2010•龍巖)如圖,在等腰梯形ABCD中,AB∥CD,點(diǎn)E、F在AB上,且AE=BF,連接CE、DF.求證:CE=DF.

【答案】分析:根據(jù)題意先證AF=BE,再根據(jù)等腰梯形的性質(zhì)可得出△ADF≌△BCE,從而可證得結(jié)論.
解答:證明:∵AE=BF,
∴AE+EF=BF+EF,
即AF=BE,
∵四邊形ABCD是等腰梯形,
∴AD=BC,∠A=∠B,
∴△ADF≌△BCE,
∴CE=DF.
點(diǎn)評:本題考查等腰梯形性質(zhì),難度不大,注意掌握等腰梯形同一底上的兩個(gè)角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年福建省龍巖市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•龍巖)如圖,拋物線交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,-4).
(1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)若直線y=-x交拋物線于M,N兩點(diǎn),交拋物線的對稱軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動(dòng)點(diǎn),過P作PF∥ED交直線MN下方的拋物線于點(diǎn)F.問:在直線MN上是否存在點(diǎn)P,使得以P、E、D、F為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省龍巖市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•龍巖)如圖是圓心角為30°,半徑分別是1、3、5、7、…的扇形組成的圖形,陰影部分的面積依次記為S1、S2、S3、…,則S50=    (結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省龍巖市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•龍巖)如圖,在矩形ABCD中,對角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別是AO、AD的中點(diǎn),若AC=8,則EF=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省龍巖市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•龍巖)如圖,若圓錐底面圓的半徑為3,則該圓錐側(cè)面展開圖扇形的弧長為( )

A.2π
B.4π
C.6π
D.9π

查看答案和解析>>

同步練習(xí)冊答案