如圖,已知四邊形ABCD是正方形,△PAD是等邊三角形,則∠BPC等于________.

30°
分析:正方形的四個(gè)角相等,四個(gè)邊相等,等邊三角形三個(gè)角相等,三個(gè)邊相等,從而求出∠ABP,進(jìn)而求出∠PBC的度數(shù),從而得到∠BPC的度數(shù).
解答:∵四邊形ABCD是正方形,△PAD是等邊三角形,
∴∠BAP=∠BAD+∠PAB=90°+60°=150°.
∵PA=AD,AB=AD,
∴PA=AB,
∴∠ABP==15°,
∴∠PBC=∠ABC-∠ABP=90°-15°=75°,
同理:∠PCB=75°,
∴∠BPC=180°-75°-75°=30°.
故答案為30°.
點(diǎn)評(píng):本題考查了正方形的性質(zhì)和等邊三角形的性質(zhì),解答本題的關(guān)鍵是熟練掌握正方形和等邊三角形的性質(zhì),此題難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,已知四邊形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求證:PA=PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形ABCD內(nèi)接于⊙O,A是
BDC
的中點(diǎn),AE⊥AC于A,與⊙O及CB精英家教網(wǎng)的延長(zhǎng)線分別交于點(diǎn)F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求證:△ADC∽△EBA;
(2)求證:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•梧州)如圖,已知:AB∥CD,BE⊥AD,垂足為點(diǎn)E,CF⊥AD,垂足為點(diǎn)F,并且AE=DF.
求證:四邊形BECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖南常德市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷 題型:047

如圖,已知四邊形AB∥CD是菱形,DEAB,DFBC.求證△ADE≌△CDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四邊形AB∥CD是菱形,DE∥AB,DFBC.求證

 


查看答案和解析>>

同步練習(xí)冊(cè)答案