【題目】某商店出售一款商品,經(jīng)市場調(diào)查反映,該商品的日銷售量y(件)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,關(guān)于該商品的銷售單價,日銷售量,日銷售利潤的部分對應(yīng)數(shù)據(jù)如表:[注:日銷售利潤=日銷售量×(銷售單價﹣成本單價)
銷售單價x(元) | 75 | 78 | 82 |
日銷售量y(件) | 150 | 120 | 80 |
日銷售利潤w(元) | 5250 | a | 3360 |
(1)根據(jù)以上信息,填空:該產(chǎn)品的成本單價是 元,表中a的值是 ,y關(guān)于x的函數(shù)關(guān)系式是 ;
(2)求該商品日銷售利潤的最大值.
(3)由于某種原因,該商品進價降低了m元/件(m>0),該商店在今后的銷售中,商店規(guī)定該商品的銷售單價不低于68元,日銷售量與銷售單價仍然滿足(1)中的函數(shù)關(guān)系,若日銷售最大利潤是6600元,直接寫出m的值.
【答案】(1)40、4560、y=﹣10x+900;(2)6250;(3)m的值為2.
【解析】
(1)根據(jù)日銷售利潤=日銷售量×(銷售單價﹣成本單價)即可求解;
(2)根據(jù)二次函數(shù)的頂點式即可求解;
(3)根據(jù)日銷售利潤=日銷售量×(銷售單價﹣成本單價),把銷售的最大利潤代入即可求解.
(1)設(shè)該產(chǎn)品的成本單價是n元,根據(jù)題意,得
5250=150×(75﹣n),解得n=40.
a=120×(78﹣40)=4560.
設(shè)日銷售量y(件)與銷售單價x(元)之間滿足的一次函數(shù)解析式為y=kx+b,
把(75,150),(78,120)代入得:, 解得:
一次函數(shù)解析式為y=﹣10x+900.
故答案為40、4560、y=﹣10x+900.
(2)根據(jù)題意,得
w=(x﹣40)(﹣10x+900)
=﹣10x2+1300x﹣36000
=﹣10(x﹣65)2+6250.
答:該商品日銷售利潤的最大值為6250元.
(3)∵銷售單價不低于68元,日銷售量與銷售單價仍然滿足(1)中的函數(shù)關(guān)系,
日銷售最大利潤是6600元時,即當(dāng)x=68時,最大利潤為6600元.
設(shè)商品降低后的進價為a元,根據(jù)題意,得
(﹣10×68+900)(68﹣a)=6600,
解得a=38,
∴m=40﹣38=2.
答:m的值為2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,長方形的三個頂點的坐標(biāo)為,,,且軸,點是長方形內(nèi)一點(不含邊界).
(1)求,的取值范圍.
(2)若將點向左移動8個單位,再向上移動2個單位到點,若點恰好與點關(guān)于軸對稱,求,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=﹣的圖象與直線y=kx(k<0)相交于點A、B,以AB為底作等腰三角形,使∠ACB=120°,且點C的位置隨著k的不同取值而發(fā)生變化,但點C始終在某一函數(shù)圖象上,則這個圖象所對應(yīng)的函數(shù)解析式為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線:與直線分別交于點.直線與交于點.記線段,圍成的區(qū)域(不含邊界)為.橫,縱坐標(biāo)都是整數(shù)的點叫做整點.
(1)當(dāng)時,區(qū)域內(nèi)的整點個數(shù)為_____;
(2)若區(qū)域內(nèi)沒有整點,則的取值范圍是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是⊙的直徑,是⊙的一條弦,,的延長線交⊙于點,交的延長線于點,連接,且恰好∥,連接交于點,延長交于點,連接.
(1)求證:是⊙的切線;
(2)求證:點是的中點;
(3)當(dāng)⊙的半徑為時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=∠ADC,對角線AC、BD交于點O,AO=BO,DE平分∠ADC交BC于點E,連接OE.
(1)求證:四邊形ABCD是矩形;
(2)若AB=2,求△OEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3過A(1,0),B(﹣3,0),直線AD交拋物線于點D,點D的橫坐標(biāo)為﹣2,點P(m,n)是線段AD上的動點.
(1)求直線AD及拋物線的解析式;
(2)過點P的直線垂直于x軸,交拋物線于點Q,求線段PQ的長度l與m的關(guān)系式,m為何值時,PQ最長?
(3)在平面內(nèi)是否存在整點(橫、縱坐標(biāo)都為整數(shù))R,使得P,Q,D,R為頂點的四邊形是平行四邊形?若存在,直接寫出點R的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】期末考試后,某市第一中學(xué)為了解本校九年級學(xué)生期末考試數(shù)學(xué)學(xué)科成績情況,決定對該年級學(xué)生數(shù)學(xué)學(xué)科期末考試成績進行抽樣分析,已知九年級共有12個班,每班48名學(xué)生,請按要求回答下列問題:
(收集數(shù)據(jù))
(1)若要從全年級學(xué)生中抽取一個48人的樣本,你認為以下抽樣方法中比較合理的有 ;(只要填寫序號即可)
①隨機抽取一個班級的48名學(xué)生;②在全年級學(xué)生中隨機抽取48名學(xué)生;③在全年級12個班中分別各抽取4名學(xué)生;④從全年級學(xué)生中隨機抽取48名男生;
(整理數(shù)據(jù))
(2)將抽取的48名學(xué)生的成績進行分組,繪制頻數(shù)分布表和成績分布扇形統(tǒng)計圖(不完整)如下.請根據(jù)圖表中數(shù)據(jù)填空:
①C類和D類部分的圓心角度數(shù)分別為 、
②估計全年級A、B類學(xué)生大約一共有 名;
成績(分) | 頻數(shù) | 頻率 |
A類(80~100) | 0.5 | |
B類(60~79) | 0.25 | |
C類(40~59) | 8 | |
D類(0~39) | 4 |
(3)學(xué)校為了解其他學(xué)校教學(xué)情況,將同層次的第一、第二兩所中學(xué)的抽樣數(shù)據(jù)進行對比,得下表:
學(xué)校 | 平均分(分) | 極差(分) | 方差 | A、B類的頻率和 |
第一中學(xué) | 71 | 52 | 432 | 0.75 |
第二中學(xué) | 71 | 80 | 497 | 0.82 |
你認為哪所學(xué)校的教學(xué)效果較好?結(jié)合數(shù)據(jù),請給出一個解釋來支持你的觀點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,菱形ABCD的頂點B在x軸的正半軸上,點A坐標(biāo)為(-4,0),點D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過點C,則k的值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com