下列平面圖形中不是軸對(duì)稱圖形的是(  。

A                B              C                 D

 
 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中,△AOB為等腰直角三角形,且OA=AB.
(1)如圖,在圖中畫出△AOB關(guān)于BO的軸對(duì)稱圖形△A1OB,若A(-3,1),請(qǐng)求出A1點(diǎn)的坐標(biāo):精英家教網(wǎng)
(2)當(dāng)△AOB繞著原點(diǎn)O旋轉(zhuǎn)到如圖所示的位置時(shí),AB與y軸交于點(diǎn)E,且AE=BE.AF⊥y軸交BO于F,連接EF,作AG∥EF交y軸于G.試判斷△AGE的形狀,并說明理由;
精英家教網(wǎng)
(3)當(dāng)△AOB繞著原點(diǎn)O旋轉(zhuǎn)到如圖所示的位置時(shí),若A(
3
,3),C為x軸上一點(diǎn),且OC=OA,∠BOC=15°,P為y軸上一點(diǎn),過P作PN⊥AC于N,PM⊥AO于M,當(dāng)P在y軸正半軸上運(yùn)動(dòng)時(shí),試探索下列結(jié)論:①PO+PN-PM不變,②PO+PM+PN不變.其中哪一個(gè)結(jié)論是正確的?請(qǐng)說明理由并求出其值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•燕山區(qū)一模)定義:對(duì)于平面直角坐標(biāo)系中的任意線段AB及點(diǎn)P,任取線段AB上一點(diǎn)Q,線段PQ長度的最小值稱為點(diǎn)P到線段AB的距離,記作d(P→AB).
已知O為坐標(biāo)原點(diǎn),A(4,0),B(3,3),C(m,n),D(m+4,n)是平面直角坐標(biāo)系中四點(diǎn).根據(jù)上述定義,解答下列問題:
(1)點(diǎn)A到線段OB的距離d(A→OB)=
2
2
2
2
;
(2)已知點(diǎn)G到線段OB的距離d(G→OB)=
5
,且點(diǎn)G的橫坐標(biāo)為1,則點(diǎn)G的縱坐標(biāo)為
1-
10
或1+
10
1-
10
或1+
10

(3)當(dāng)m的值變化時(shí),點(diǎn)A到動(dòng)線段CD的距離d (A→CD)始終為2,線段CD的中點(diǎn)為M.
①在圖(2)中畫出點(diǎn)M隨線段CD運(yùn)動(dòng)所圍成的圖形并求出該圖形的面積.
②點(diǎn)E的坐標(biāo)為(0,2),m>0,n>0,作MH⊥x軸,垂足為H.是否存在m的值,使得以A、M、H為頂點(diǎn)的三角形與△AOE相似?若存在,求出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

按要求完成下列各題
(1)在圖1上畫出△ABC中邊BC上的高AD和邊AC上的中線BE(只保留作圖痕跡,不寫作法)
(2)如圖2,在平面直角坐標(biāo)系xOy中,A(-1,5),B(-1,0),C(-4,3)
①△ABC的面積是
7.5
7.5
;②作出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1;③寫出點(diǎn)A1,B1,C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年嵊州市初中畢業(yè)生學(xué)業(yè)評(píng)價(jià)調(diào)測(cè)、數(shù)學(xué)試題 題型:044

如圖,平面直角坐標(biāo)系中,△ABC是邊長為3的正三角形,其中點(diǎn)B的坐標(biāo)為(-4,1),點(diǎn)C的坐標(biāo)為(-1,1),請(qǐng)按下列要求進(jìn)行操作和探索:

(1)以y軸為對(duì)稱軸作△ABC的對(duì)稱圖形△A1B1C1(不寫作法,保留作圖痕跡);

(2)以x軸為對(duì)稱軸作△A1B1C1的對(duì)稱圖形△A2B2C2(不寫作法,保留作圖痕跡);

(3)直接寫出點(diǎn)B1、A2的坐標(biāo);

(4)探索:能否通過一次旋轉(zhuǎn)將△ABC旋轉(zhuǎn)到△A2B2C2的位置?你若認(rèn)為能,請(qǐng)作出肯定回答,并指出這時(shí)的旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度;你認(rèn)為不能,請(qǐng)作出否定回答(不說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中,△AOB為等腰直角三角形,且OA-AB.

  (1)如圖,在圖中畫出△AOB關(guān)于BO的軸對(duì)稱圖形△A1OB,若A(-3,1),請(qǐng)求出A1點(diǎn)的坐標(biāo):

  (2)當(dāng)△AOB繞著原點(diǎn)O旋轉(zhuǎn)到如圖所示的位置時(shí),AB與y軸交于點(diǎn)E,且AE=BE.AF⊥y軸交BO于F,連結(jié)EF,作AG//EF交y軸于G.試判斷△AGE的形狀,并說明理由;

} (3)當(dāng)△AOB繞著原點(diǎn)O旋轉(zhuǎn)到如圖所示的位置時(shí),若A(,3),c為x軸上一點(diǎn),且OC=OA,∠BOC=15°,P為y軸上一點(diǎn),過P做PN⊥AC于N,PM⊥AO于M,當(dāng)P在y軸正半軸上運(yùn)動(dòng)時(shí),試探索下列結(jié)論:①PO+PN-PM不變,②PO+PM+PN不變.其中哪一個(gè)結(jié)論是正確的?請(qǐng)說明理由并求出其值.

查看答案和解析>>

同步練習(xí)冊(cè)答案