直線l與半徑r的圓O相交,且點O到直線l的距離為6,則r的取值范圍是

A、          B、           C、         D、

 

【答案】

C

【解析】

試題分析:根據(jù)直線與圓的位置關(guān)系來判定:①直線l和⊙O相交,則d<r;②直線l和⊙O相切,則d=r;③直線l和⊙O相離,則d>r(d為直線與圓的距離,r為圓的半徑)。因此,

∵直線l與半徑r的圓O相交,且點O到直線l的距離為6,∴r的取值范圍是r>d=6。故選C。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=10cm.點O以2cm/s的速度在直線BC上從左向右運動,設(shè)運動時間為t(s),當(dāng)t=0s時,點O在△ABC的左側(cè),OC=5cm.以點O為圓心、
12
t
cm長度為半徑r的半圓O與直線BC交于D、E兩點
(1)當(dāng)t為何值時,△ABC的一邊所在直線與半圓O所在的圓相切?
(2)當(dāng)△ABC的一邊所在直線與半圓O所在的圓相切時,如果半圓O與直線DE圍成的區(qū)域與△ABC三邊圍成的區(qū)域有重疊部分,求重疊部分的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,直線L與兩坐標(biāo)軸的交點坐標(biāo)分別是A(-3,0),B(0,4),O是坐標(biāo)系原點.精英家教網(wǎng)
(1)求直線L所對應(yīng)的函數(shù)的表達式;
(2)若以O(shè)為圓心,半徑為R的圓與直線L相切,求R的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廊坊一模)圓的滾動問題探索:
(1)如圖1,一個半徑為r的圓沿直線方向從A地滾動到B地,若AB的長為m,則該圓在滾動過程中自轉(zhuǎn)了
m
2πr
m
2πr
圈.(用含的式子表示)
試驗:
現(xiàn)有兩個半徑相等的圓(如圖5),將⊙O2固定,⊙O1沿定圓的周圍滾動,滾動時兩圓保持相外切的位置關(guān)系.當(dāng)⊙O1沿⊙O2周圍滾動一周回到原來的位置時,⊙O1自轉(zhuǎn)了2圈,而⊙O1的圓心運動的線路也是一個圓,而這個圓的周長恰好是⊙O1的周長的2倍.
(2)如圖2,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的周圍滾動,滾動時兩圓保持相外切的位置關(guān)系.當(dāng)⊙O1沿⊙O2沿周圍滾動一周回到原來的位置時,⊙O1自轉(zhuǎn)了
R+r
r
R+r
r
圈;

(3)如圖3,⊙O1,和⊙O2內(nèi)切,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的邊緣滾動,動時兩圓保持相內(nèi)切的位置關(guān)系.當(dāng)⊙O1沿⊙O2邊緣滾動一圈回到原來的位置時,⊙O1自轉(zhuǎn)了
R-r
r
R-r
r
圈.
解決問題:
如圖4,一個等邊三角形與它的一邊相切的圓的周長相等,當(dāng)此圓按箭頭方向從某一位置沿等邊三角形的三邊作無滑動滾動,直至回到原來的位置時,該圓自轉(zhuǎn)了多少圈?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)活動課上,甲、乙兩位同學(xué)在研究一道數(shù)學(xué)題:“已知:如圖1,在△ABC和△DEF中,∠A=∠D=90°,∠B=50°,∠E=32°,且BC=EF.試畫直線m,l,使直線m將△ABC分成的兩個小三角形與直線l將△DEF分成的兩個小三角形分別相似,并標(biāo)出每個小三角形各內(nèi)角的度數(shù).”
甲同學(xué)是這樣做的:如圖2,使得兩個直角三角形的斜邊重合,以斜邊中點0為圓心,OB長為半徑作出輔助圓,根據(jù)到定點的距離等于定長的點在圓上,可知A、B(E)、C(F)、D在⊙0上.設(shè)BD所在的直線m與AC所在的直線l交于點G,根據(jù)同弧所對的圓周角相等,由∠ABC=50°,∠DEF=32°,易求得∠ABG=DFG=18°,再由∠A=∠D=90°,可求得∠AGB=∠DGF=72°,∠GCB=40°,∠BGC=108°,從而△AGB∽△DGF.△GBC∽△GEF.
乙同學(xué)在甲同學(xué)的啟發(fā)下,利用輔助圓又補充了其它分割方法.
你看明白甲同學(xué)的分割方法了嗎?請你仿照甲同學(xué)的方法,把這道題其它的所有分割方法補充完整.
要求:不需寫解答過程.如圖2所示.利用輔助圓畫出示意圖,標(biāo)明直線及每個小三角形各內(nèi)角的度數(shù)即可.

查看答案和解析>>

同步練習(xí)冊答案