【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處.當△CEB′為直角三角形時,BE的長為

【答案】 或3
【解析】解:當△CEB′為直角三角形時,有兩種情況:
①當點B′落在矩形內(nèi)部時,如答圖1所示.
連結(jié)AC,
在Rt△ABC中,AB=3,BC=4,
∴AC= =5,
∵∠B沿AE折疊,使點B落在點B′處,
∴∠AB′E=∠B=90°,
當△CEB′為直角三角形時,只能得到∠EB′C=90°,
∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,
∴EB=EB′,AB=AB′=3,
∴CB′=5﹣3=2,
設BE=x,則EB′=x,CE=4﹣x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2 ,
∴x2+22=(4﹣x)2 , 解得x=
∴BE= ;
②當點B′落在AD邊上時,如答圖2所示.
此時ABEB′為正方形,∴BE=AB=3.
綜上所述,BE的長為 或3.
故答案為: 或3.
當△CEB′為直角三角形時,有兩種情況:①當點B′落在矩形內(nèi)部時,如答圖1所示.連結(jié)AC,先利用勾股定理計算出AC=5,根據(jù)折疊的性質(zhì)得∠AB′E=∠B=90°,而當△CEB′為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=3,可計算出CB′=2,設BE=x,則EB′=x,CE=4﹣x,然后在Rt△CEB′中運用勾股定理可計算出x.②當點B′落在AD邊上時,如答圖2所示.此時ABEB′為正方形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】老師計算學生的學期總評成績按照如下的標準:平時作業(yè)占10%,單元測驗占30%,期中考試占25%,期末考試占35%.小麗和小明的成績?nèi)缦滤荆?/span>

學生

平時作業(yè)

單元測驗

期中考試

期未考試

小麗

80

75

71

88

小明

76

80

70

90

請你通過計算,比較誰的學期總評成績高?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)軸上,原點及原點左邊的點表示的數(shù)是(
A.正數(shù)
B.負數(shù)
C.非正數(shù)
D.非負數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,∠BC的平分線相交于點O,作BO、CO的垂直平分線分別交BC于點E、F.小明說:EFBC的三等分點.你同意他的說法嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)閱讀理解:

如圖,在ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點D逆時針旋轉(zhuǎn)180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是 ;

(2)問題解決:

如圖,在ABC中,D是BC邊上的中點,DEDF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CFEF;

(3)問題拓展:

如圖,在四邊形ABCD中,B+D=180°,CB=CD,BCD=140°,以C為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從車站向東走400米,再向北走500米到小紅家;從車站向北走500米,再向西走200米到小強家,則( )
A.小強家在小紅家的正東
B.小強家在小紅家的正西
C.小強家在小紅家的正南
D.小強家在小紅家的正北

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果經(jīng)過三角形某一個頂點的一條直線可把它分成兩個小等腰三角形,那么我們稱該三角形為等腰三角形的生成三角形,簡稱生成三角形.

(1)如圖,已知等腰直角三角形ABC,∠A=90°,試說明:△ABC是生成三角形;

(2)若等腰三角形DEF有一個內(nèi)角等于36°,請你畫出簡圖說明△DEF是生成三角形.(要求畫出直線,標注出圖中等腰三角形的頂角、底角的度數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果兩個直角三角形的兩條直角邊對應相等,那么兩個直角三角形全等的依據(jù)是( )

A. AAS B. SAS C. HL D. SSS

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,⊙O和⊙O相交于A、B兩點, 動點P在⊙O上,且在⊙ 外,直線PA、PB分別交⊙O于C、D.問:⊙O的弦CD的長是否隨點P的運動而發(fā)生變化?如果發(fā)生變化,請你確定CD最長和最短時P的位置,如果不發(fā)生變化,請你給出證明;

查看答案和解析>>

同步練習冊答案