【題目】如圖:△ABC和△ADE是等邊三角形,AD是BC邊上的中線.求證:BE=BD.
【答案】證明見解析.
【解析】試題分析:根據等邊三角形三線合一的性質可得AD為∠BAC的角平分線,根據等邊三角形各內角為60°即可求得∠BAE=∠BAD=30°,進而證明△ABE≌△ABD,得BE=BD.
試題解析:(方法1)證明:∵△ABC和△ADE都是等邊三角形
∴∠DAE=∠BAC=60°∴∠EAB=∠DAC
∵AE=AD,AB=AC
∴△ABE≌△ACD(SAS)
∴BE="CD"
∵AD是△ABC的中線
∴BD="CD"
∴BE=BD
(方法2)證明:∵△ABC是等邊三角形,
∴∠BAC=60°
∵AD為BC邊上的中線,
∴AD平分∠BAC.
即∠BAD=∠DAC=∠BAC=30°,
又∵△ADE為等邊三角形,
∴AE=AD=ED,且∠EAD=60°,
而∠BAD=30°,
∴∠EAB=∠EAD﹣∠BAD=30°.
∴∠EAB=∠BAD.
∴AB垂直平分DE,
∴BE=BD
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點M(-3,2)向右平移2個單位,向下平移3個單位后得點N,則點N的坐標是( )
A. (1,1) B. (-1,1) C. (-1,-1) D. (1,-1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】運用等式性質進行的變形,不正確的是( )
A.如果a=b,那么a﹣c=b﹣c
B.如果a=b,那么a+c=b+c
C.如果a=b,那么ac=bc
D.如果ac=bc,那么a=b
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年1月至8月,某市汽車產量為80萬輛,其中80萬用科學記數法表示為( )
A.8×104B.0.8×105C.8×106D.8×105
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列命題中,真命題的個數( )
(1)⊙O的半徑為5,點P在直線l上,且OP=5,則直線l與⊙O相切
(2)在Rt△ABC中,∠C=90°,AC=5,BC=12,則△ABC的外接圓半徑為6.5
(3)正多邊形都是軸對稱圖形,也都是中心對稱圖形
(4)三角形的外心到三角形各邊的距離相等.
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小李在解方程5a﹣x=13(x為未知數)時,誤將﹣x看作+x,得方程的解為x=﹣2,那么原方程的解為( )
A.x=﹣3
B.x=0
C.x=2
D.x=1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點C在⊙O上,延長BC至點D,使DC=BC.延長DA與⊙O的另一個交點為E,連接AC、CE.
(1)求證:∠B=∠D;
(2)若AB=13,BC﹣AC=7,求CE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com