精英家教網 > 初中數學 > 題目詳情

已知|x|=3,y2=16,求|x+y|的值________.

1或7
分析:注意絕對值的意義:絕對值等于正數的數有2個,且互為相反數;
互為相反數的兩個數的平方相等.
解答:∵|x|=3,y2=16,∴x=±3,y=±4.
當x=3,y=4時,x+y=7;
當x=3,y=-4時,x+y=-1;
當x=-3,y=4時,x+y=1;
當x=-3,y=-4時,x+y=-7.
∴|x+y|=1或7.
點評:考查了絕對值的性質和平方的性質,注意此題應考慮四種情況.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知函數y=y1-y2,y1與x成反比例,y2與x-2成正比例,且當x=1時,y=-1;當x=3時,y=5,求y與x的函數關系式,并求當x=5時y的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

23、仿照例子解題:“已知(x2+2x-1)(x2+2x+2)=4,求x2+2x的值”,
在求解這個題目中,運用數學中的整體換元可以使問題變得簡單,具體方法如下:
解:設x2+2x=y,則原方程可變?yōu)椋海▂-1)(y+2)=4
整理得y2+y-2=4即:y2+y-6=0
解得y1=-3,y2=2
∴x2+2x的值為-3或2
請仿照上述解題方法,完成下列問題:
已知:(x2+y2-3)(2x2+2y2-4)=24,求x2+y2的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(1)計算:2sin230°•tan30°-cos60°•tan60°;
(2)解方程:3x(x-1)=2-2x;
(3)已知:y=y1+y2,y1與x2成正比例,y2與x成反比例,且x=1時,y=3;x=-1時,y=1.求x=-
12
時,y的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知|x|=4,y2=4且y<0,則x+y的值為
2或-6
2或-6

查看答案和解析>>

科目:初中數學 來源: 題型:

已知|x|=3,y2=16,則x+y等于(  )

查看答案和解析>>

同步練習冊答案