【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點,∠ABD=2∠BAC,過點C作CE⊥DB交DB的延長線于點E,直線AB與CE相交于點F.
(1)求證:CF為⊙O的切線;
(2)填空:當(dāng)∠CAB的度數(shù)為________時,四邊形ACFD是菱形.
【答案】30°
【解析】(1)連結(jié)OC,如圖,由于∠A=∠OCA,則根據(jù)三角形外角性質(zhì)得∠BOC=2∠A,而∠ABD=2∠BAC,所以∠ABD=∠BOC,根據(jù)平行線的判定得到OC∥BD,再CE⊥BD得到OC⊥CE,然后根據(jù)切線的判定定理得CF為⊙O的切線;
(2)根據(jù)三角形的內(nèi)角和得到∠F=30°,根據(jù)等腰三角形的性質(zhì)得到AC=CF,連接AD,根據(jù)平行線的性質(zhì)得到∠DAF=∠F=30°,根據(jù)全等三角形的性質(zhì)得到AD=AC,由菱形的判定定理即可得到結(jié)論.
答:
(1)證明:連結(jié)OC,如圖,
∵OA=OC,
∴∠A=∠OCA,
∴∠BOC=∠A+∠OCA=2∠A,
∵∠ABD=2∠BAC,
∴∠ABD=∠BOC,
∴OC∥BD,
∵CE⊥BD,
∴OC⊥CE,
∴CF為⊙O的切線;
(2)當(dāng)∠CAB的度數(shù)為30°時,四邊形ACFD是菱形,理由如下:
∵∠A=30°,
∴∠COF=60°,
∴∠F=30°,
∴∠A=∠F,
∴AC=CF,
連接AD,
∵AB是⊙O的直徑,
∴AD⊥BD,
∴AD∥CF,
∴∠DAF=∠F=30°,
在△ACB與△ADB中,
,
∴△ACB≌△ADB,
∴AD=AC,
∴AD=CF,
∵AD∥CF,
∴四邊形ACFD是菱形。
故答案為:30°.
【題型】解答題
【結(jié)束】
22
【題目】經(jīng)市場調(diào)查,某種商品在第x天的售價與銷量的相關(guān)信息如下表;已知該商品的進價為每件30元,設(shè)銷售該商品每天的利潤為y元.
(1)求出y與x的函數(shù)關(guān)系式
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大?最大利潤是多少?
(3)該商品銷售過程中,共有多少天日銷售利潤不低于4800元?直接寫出答案.
【答案】(1)當(dāng)1≤x<50時,y=﹣2x2+180x+2000,當(dāng)50≤x≤90時,y=﹣120x+12000; (2)該商品第45天時,當(dāng)天銷售利潤最大,最大利潤是6050元;(3)該商品在銷售過程中,共41天每天銷售利潤不低于4800元.
【解析】(1)根據(jù)單價乘以數(shù)量,可得利潤,可得答案;
(2)根據(jù)分段函數(shù)的性質(zhì),可分別得出最大值,根據(jù)有理數(shù)的比較,可得答案;
(3)根據(jù)二次函數(shù)值大于或等于4800,一次函數(shù)值大于或等于48000,可得不等式,根據(jù)解不等式組,可得答案.
解: (1)當(dāng)1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000,
當(dāng)50≤x≤90時,y=(200-2x)(90-30)=-120x+12000;
(2)當(dāng)1≤x<50時,二次函數(shù)開口向下,二次函數(shù)對稱軸為x=45,
當(dāng)x=45時,y最大=-2×452+180×45+2000=6050,
當(dāng)50≤x≤90時,y隨x的增大而減小,
當(dāng)x=50時,y最大=6000,
綜上所述,該商品第45天時,當(dāng)天銷售利潤最大,最大利潤是6050元;
(3)當(dāng)1≤x<50時,y=-2x2+180x+2000≥4800,解得20≤x≤70,
因此利潤不低于4800元的天數(shù)是20≤x<50,共30天;
當(dāng)50≤x≤90時,y=-120x+12000≥4800,解得x≤60,
因此利潤不低于4800元的天數(shù)是50≤x≤60,共11天,
所以該商品在銷售過程中,共41天每天銷售利潤不低于4800元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為培養(yǎng)學(xué)生自主意識,拓寬學(xué)生視野,促進學(xué)習(xí)與生活的深度融合我市某中學(xué)決定組織部分學(xué)生去青少年綜合實踐基地進行綜合實踐活動在參加此次活動的師生中,若每位老師帶17個學(xué)生,還剩12個學(xué)生沒人帶;若每位老師帶18個學(xué)生,就有一位老師少帶4個學(xué)生現(xiàn)有甲、乙兩種大客車它們的載客量和租金如表所示
甲種客車 | 乙種客車 | |
載客量(人/輛) | 30 | 42 |
租金(元/輛) | 300 | 400 |
學(xué)校計劃此實踐活動的租車總費用不超過3100元,為了安全每輛客車上至少要有2名老師.
(1)參加此次綜合實踐活動的老師和學(xué)生各有多少人?
(2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有2名老師,租用客車總數(shù)為多少輛?
(3)你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CA⊥AB,垂足為 A,AB=24,AC=12,射線 BM⊥AB,垂足為 B, 一動點 E 從 A點出發(fā)以 3 厘米/秒沿射線 AN 運動,點 D 為射線 BM 上一動點, 隨著 E 點運動而運動,且始終保持 ED=CB,當(dāng)點 E 經(jīng)過______秒時,△DEB 與△BCA 全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于半圓,AB是直徑,過A作直線MN,∠MAC=∠ABC,D是弧AC的中點,連接BD交AC于G,過D作DE⊥AB于E,交AC于F.
(1)求證:MN是半圓的切線;
(2)作DH⊥BC交BC的延長線于點H,連接CD,試判斷線段AE與線段CH的數(shù)量關(guān)系,并說明理由.
(3)若BC=4,AB=6,試求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD的對角線AC=8,BD=6,且,P、Q、R、S分別是AB、BC、CD、DA的中點,則PR2+QS2的值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校興趣小組想測量一座大樓AB的高度.如圖6,大樓前有一段斜坡BC,已知BC的長為12米,它的坡度i=1:.在離C點40米的D處,用測角儀測得大樓頂端A的仰角為37°,測角儀DE的高為1.5米,求大樓AB的高度約為多少米?(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)
【答案】33.3.
【解析】
試題分析:延長AB交直線DC于點F,過點E作EH⊥AF,垂足為點H,在Rt△BCF中利用坡度的定義求得CF的長,則DF即可求得,然后在直角△AEH中利用三角函數(shù)求得AF的長,進而求得AB的長.
試題解析:延長AB交直線DC于點F,過點E作EH⊥AF,垂足為點H.
∵在Rt△BCF中, =i=1:,∴設(shè)BF=k,則CF=k,BC=2k.
又∵BC=12,∴k=6,∴BF=6,CF=.∵DF=DC+CF,∴DF=40+.∵在Rt△AEH中,tan∠AEH=,∴AH=tan37°×(40+)≈37.8(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.8﹣4.5=33.3.
答:大樓AB的高度約為33.3米.
考點:1.解直角三角形的應(yīng)用-仰角俯角問題;2.解直角三角形的應(yīng)用-坡度坡角問題.
【題型】解答題
【結(jié)束】
24
【題目】為迎接安順市文明城市創(chuàng)建工作,某校八年一班開展了“社會主義核心價值觀、未成年人基本文明禮儀規(guī)范”的知識競賽活動,成績分為A、B、C、D四個等級,并將收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中所給出的信息,解答下列各題:
(1)求八年一班共有多少人;
(2)補全折線統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中等極為“D”的部分所占圓心角的度數(shù)為________;
(4)若等級A為優(yōu)秀,求該班的優(yōu)秀率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接安順市文明城市創(chuàng)建工作,某校八年一班開展了“社會主義核心價值觀、未成年人基本文明禮儀規(guī)范”的知識競賽活動,成績分為A、B、C、D四個等級,并將收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中所給出的信息,解答下列各題:
(1)求八年一班共有多少人;
(2)補全折線統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中等極為“D”的部分所占圓心角的度數(shù)為________;
(4)若等級A為優(yōu)秀,求該班的優(yōu)秀率.
【答案】(1)60;(2)補圖見解析;(3)108°;(4)5%.
【解析】(1)用B等人數(shù)除以其所占的百分比即可得到總?cè)藬?shù);
(2)用求得的總?cè)藬?shù)乘以C等所占的百分比即可得到C等的人數(shù),總?cè)藬?shù)減去A、C等的人數(shù)即可求得D等的人數(shù);
(3)用D等的人數(shù)除以總?cè)藬?shù)乘以360°即可得到答案;
(4)用A等的人數(shù)除以總?cè)藬?shù)乘以100%即可得到答案. 解答:
解:(1)30÷50%=60(人)
∴八年級一共有60人。
(2)等級為“C”的人數(shù)為60×15%=9(人).
等級為“D”的人數(shù)為603309=18(人).
補全折線統(tǒng)計圖如下。
(3)等極為“D”的部分所占圓心角的度數(shù)為 ×360°=108°,
故答案為:108°.
(4)該班的優(yōu)秀率×100%=5%.
∴該班的優(yōu)秀率為5%.
點睛:本題考查統(tǒng)計相關(guān)知識.利用拆線圖與扇形圖得出相關(guān)信息是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
25
【題目】已知拋物線y=ax2+bx+c經(jīng)過A(﹣1,0),B(3,0),C(0,3)三點,直線L是拋物線的對稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)求拋物線的頂點坐標(biāo);
(3)設(shè)P點是直線L上的一個動點,當(dāng)△PAC的周長最小時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進45件A商品和20件B商品共用了800元,購進60件A商品和35件B商品共用了1100元.
(1)A、B兩種商品的單價分別是多少元?
(2)已知該商店購進B商品的件數(shù)比購進A商品件數(shù)的2倍少4件,如果需要購進A、B兩種商品的總件數(shù)不少于32件,且該商店購進A、B兩種商品的總費用不超過296元,那么該商店有幾種購進方案?并寫出所有可能的購進方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺污水處理設(shè)備現(xiàn)有A,B兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2臺A型設(shè)備比購買3臺B型設(shè)備少6萬元.
A型 | B型 | |
價格萬元臺 | a | b |
處理污水量噸月 | 240 | 200 |
求a,b的值;
治污公司經(jīng)預(yù)算購買污水處理設(shè)備的資金不超過105萬元,你認(rèn)為該公司有哪幾種購買方案;
在的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設(shè)計一種最省錢的購買方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com