某商場(chǎng)試銷(xiāo)一種成本為每件60元的服裝,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55;x=75時(shí),y=45.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫(xiě)出利潤(rùn)W與銷(xiāo)售單價(jià)x之間的關(guān)系式;
(3)銷(xiāo)售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?
(1)根據(jù)題意得
65k+b=55
75k+b=45.

解得:
k=-1
b=120

所求一次函數(shù)的表達(dá)式為y=-x+120.

(2)W=(x-60)•(-x+120)=-x2+180x-7200;

(3)∵W=-x2+180x-7200=-(x-90)2+900,
∴當(dāng)x=90時(shí),w有最大值,此時(shí)w=900,
答:當(dāng)銷(xiāo)售單價(jià)定為90元時(shí),商場(chǎng)可獲最大利潤(rùn),最大利潤(rùn)是900元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-
1
4
x2+x+3
與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,頂點(diǎn)為點(diǎn)D,對(duì)稱(chēng)軸l與直線BC相交于點(diǎn)E,與x軸相交于點(diǎn)F.
(1)求直線BC的解析式;
(2)設(shè)點(diǎn)P為該拋物線上的一個(gè)動(dòng)點(diǎn),以點(diǎn)P為圓心,r為半徑作⊙P
①當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)D時(shí),若⊙P與直線BC相交,求r的取值范圍;
②若r=
4
5
5
,是否存在點(diǎn)P使⊙P與直線BC相切?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
提示:拋物線y=ax2+bx+x(a≠0)的頂點(diǎn)坐標(biāo)(-
b
2a
4ac-b2
4a
),對(duì)稱(chēng)軸x=-
b
2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中給定以下五個(gè)點(diǎn)A(-3,0),B(-1,4),C(0,3),D(
1
2
,
7
4
),E(1,0).
(1)請(qǐng)從五點(diǎn)中任選三點(diǎn),求一條以平行于y軸的直線為對(duì)稱(chēng)軸的拋物線的解析式;
(2)求該拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱(chēng)軸,并畫(huà)出草圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線的頂點(diǎn)坐標(biāo)是(
5
2
,-
9
8
)
,且經(jīng)過(guò)點(diǎn)A(8,14).
(1)求該拋物線的解析式;
(2)設(shè)該拋物線與y軸相交于點(diǎn)B,與x軸相交于C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),試求點(diǎn)B、C、D的坐標(biāo);
(3)設(shè)點(diǎn)P是x軸上的任意一點(diǎn),分別連接AC、BC.試判斷:PA+PB與AC+BC的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)P(m,-1)(m>0).連接OP,將線段OP繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段OM,且點(diǎn)M是拋物線y=ax2+bx+c的頂點(diǎn).
(1)若m=1,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(2,2),當(dāng)0≤x≤1時(shí),求y的取值范圍;
(2)已知點(diǎn)A(1,0),若拋物線y=ax2+bx+c與y軸交于點(diǎn)B,直線AB與拋物線y=ax2+bx+c有且只有一個(gè)交點(diǎn),請(qǐng)判斷△BOM的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)平面中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+bx+c的圖象與y軸的負(fù)半軸相交于點(diǎn)C,點(diǎn)C的坐標(biāo)為(0,-3),且BO=CO.
(1)求出B點(diǎn)坐標(biāo)和這個(gè)二次函數(shù)的解析式;
(2)求出y隨x的增大而減小的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某施工單位計(jì)劃用地磚鋪設(shè)正方形廣場(chǎng)地面ABCD(如圖所示),廣場(chǎng)四角白色區(qū)域?yàn)檎叫,陰影部分為四個(gè)矩形,四個(gè)矩形的寬都等于正方形的邊長(zhǎng),陰影部分鋪綠色地磚,其余部分鋪白色地磚.已知
AB=100m,設(shè)小正方形的邊長(zhǎng)為xm.
(1)鋪綠色地磚的面積為_(kāi)_____m2;鋪白色地磚的面積為_(kāi)_____m2(用含x的代數(shù)式表示);
(2)若鋪綠色地磚的費(fèi)用為每平方米20元,鋪白色地磚的費(fèi)用為每平方米30元,設(shè)鋪廣場(chǎng)地面的總費(fèi)用為y元,求y關(guān)于x的函數(shù)解析式,并求所需的最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,水平地面的A、B兩點(diǎn)處有兩棵筆直的大樹(shù)相距2米,小明的父親在這兩棵樹(shù)間拴了一根繩子,給他做了一個(gè)簡(jiǎn)易的秋千.拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹(shù)0.5米時(shí),頭部剛好接觸到繩子.
(1)請(qǐng)完成如下操作:以AB所在直線為x軸、線段AB的垂直平分線為y軸,建立平面直角坐標(biāo)系,根據(jù)題中提供的信息,求繩子所在拋物線的函數(shù)關(guān)系式;
(2)求繩子的最低點(diǎn)離地面的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,EF是一面長(zhǎng)18米的墻,用總長(zhǎng)為32米的木柵欄(圖中的虛線)圍一個(gè)矩形場(chǎng)地,中間還要隔成三塊.設(shè)與墻頭垂直的邊AD長(zhǎng)為x米,
(1)用含x的代數(shù)式表示AB的長(zhǎng)為_(kāi)_____米;
(2)若要圍成的矩形面積為60米2,求AB的長(zhǎng);
(3)當(dāng)x為何值時(shí),矩形的面積S最大?是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案