某商店以6元/千克的價格購進某種干果1140千克,并對其進行篩選分成甲級干果與乙級干果后同時開始銷售.這批干果銷售結(jié)束后,店主從銷售統(tǒng)計中發(fā)現(xiàn):甲級干果與乙級干果在銷售過程中每天都有銷量,且在同一天賣完;甲級干果從開始銷售至銷售的第x天的總銷量y1(千克)與x的關(guān)系為y1=-x2+40x;乙級干果從開始銷售至銷售的第t天的總銷量y2(千克)與t的關(guān)系為y2=at2+bt,且乙級干果的前三天的銷售量的情況見下表:
t 1 2 3
y2 21 44 69
(1)求a、b的值;
(2)若甲級干果與乙級干果分別以8元/千克和6元/千克的零售價出售,則賣完這批干果獲得的毛利潤是多少元?
(3)問從第幾天起乙級干果每天的銷量比甲級干果每天的銷量至少多6千克?
(說明:毛利潤=銷售總金額-進貨總金額.這批干果進貨至賣完的過程中的損耗忽略不計)
分析:(1)根據(jù)表中的數(shù)據(jù)代入y2=at2+bt后,得到關(guān)于a,b的二元一次方程,從而可求出解.
(2)設(shè)干果用n天賣完,根據(jù)兩個關(guān)系式和干果共有1140千克可列方程求解.然后用售價-進價,得到利潤.
(3)設(shè)第m天乙級干果每天的銷量比甲級干果每天的銷量至少多6千克,從而可列出不等式求解.
解答:解:(1)根據(jù)表中的數(shù)據(jù)可得
21=a+b
44=4a+2b

a=1
b=20

答:a、b的值分別是1、20;

(2)甲級干果和乙級干果n天售完這批貨.
-n2+40n+n2+20n=1140
n=19,
當(dāng)n=19時,y1=399,y2=741,
毛利潤=399×8+741×6-1140×6=798(元),
答:賣完這批干果獲得的毛利潤是798元.

(3)設(shè)從第m天起乙級干果每天的銷量比甲級干果每天的銷量至少多6千克,則甲、乙級干果的銷售量為m天的銷售量減去m-1天的銷售量,
即甲級水果第m天所賣出的干果數(shù)量:(-m2+40m)-[-(m-1)2+40(m-1)]=-2m+41.
乙級水果第m天所賣出的干果數(shù)量:(m2+20m)-[(m-1)2+20(m-1)]=2m+19,
(2m+19)-(-2m+41)≥6,
解得:m≥7,
答:第7天起乙級干果每天的銷量比甲級干果每天的銷量至少多6千克.
點評:本題考查理解題意的能力,關(guān)鍵是根據(jù)表格代入數(shù)列出二元一次方程組求出a和b,確定函數(shù)式,然后根據(jù)等量關(guān)系和不等量關(guān)系分別列方程和不等式求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣陽區(qū)一模)某商店以4元/千克的價格購進板栗400千克,對其進行篩選分成甲級板栗與乙級板栗,同時開始銷售.這批板栗銷售結(jié)束后,店主從銷售統(tǒng)計中發(fā)現(xiàn):甲級板栗與乙級板栗在銷售過程中每天都有銷量,且在同一天賣完;甲級板栗從開始銷售至銷售的第x天的總銷量y1(千克)與x的關(guān)系為y1=ax2+bx,且甲級板栗的前三天的銷售量的情況見下表;乙級板栗從開始銷售至銷售的第x天的總銷量y2(千克)與x的關(guān)系如圖所示.(說明:毛利潤=銷售總金額-進貨總金額.這批板栗進貨至賣完的過程中的損耗忽略不計)
x 1 2 3
y1 21 44 69
(1)分別求出y1、y2關(guān)于x的函數(shù)式;
(2)若甲級板栗與乙級板栗分別以8元/千克、6元/千克的零售價出售,則賣完這批板栗獲得的毛利潤是多少元?
(3)問從第幾天起甲級板栗每天銷量比乙級板栗每天的銷量至少多15千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•常州)某商店以6元/千克的價格購進某種干果1140千克,并對其進行篩選分成甲級干果與乙級干果后同時開始銷售.這批干果銷售結(jié)束后,店主從銷售統(tǒng)計中發(fā)出:甲級干果與乙級干果在銷售過程中每天都有銷量,且在同一天賣完;甲級干果從開始銷售至銷售的第x天的總銷量y1(千克)與x的關(guān)系為y1=﹣x2+40x;乙級干果從開始銷售至銷售的第t天的總銷量y2(千克)與t的關(guān)系為y2=at2+bt,且乙級干果的前三天的銷售量的情況見下表:

t

1

2

3

y2

21

44

69

(1)求a、b的值;

(2)若甲級干果與乙級干果分別以8元/千克的6元/千克的零售價出售,則賣完這批干果獲得的毛利潤是多少元?

(3)問從第幾天起乙級干果每天的銷量比甲級干果每天的銷量至少多6千克?

(說明:毛利潤=銷售總金額﹣進貨總金額.這批干果進貨至賣完的過程中的損耗忽略不計)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省常州市中考數(shù)學(xué)試卷 題型:解答題

(2011•常州)某商店以6元/千克的價格購進某種干果1140千克,并對其進行篩選分成甲級干果與乙級干果后同時開始銷售.這批干果銷售結(jié)束后,店主從銷售統(tǒng)計中發(fā)出:甲級干果與乙級干果在銷售過程中每天都有銷量,且在同一天賣完;甲級干果從開始銷售至銷售的第x天的總銷量y1(千克)與x的關(guān)系為y1=﹣x2+40x;乙級干果從開始銷售至銷售的第t天的總銷量y2(千克)與t的關(guān)系為y2=at2+bt,且乙級干果的前三天的銷售量的情況見下表:

t
1
2
3
y2
21
44
69
(1)求a、b的值;
(2)若甲級干果與乙級干果分別以8元/千克的6元/千克的零售價出售,則賣完這批干果獲得的毛利潤是多少元?
(3)問從第幾天起乙級干果每天的銷量比甲級干果每天的銷量至少多6千克?
(說明:毛利潤=銷售總金額﹣進貨總金額.這批干果進貨至賣完的過程中的損耗忽略不計)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年河北省廊坊市廣陽區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

某商店以4元/千克的價格購進板栗400千克,對其進行篩選分成甲級板栗與乙級板栗,同時開始銷售.這批板栗銷售結(jié)束后,店主從銷售統(tǒng)計中發(fā)現(xiàn):甲級板栗與乙級板栗在銷售過程中每天都有銷量,且在同一天賣完;甲級板栗從開始銷售至銷售的第x天的總銷量y1(千克)與x的關(guān)系為y1=ax2+bx,且甲級板栗的前三天的銷售量的情況見下表;乙級板栗從開始銷售至銷售的第x天的總銷量y2(千克)與x的關(guān)系如圖所示.(說明:毛利潤=銷售總金額-進貨總金額.這批板栗進貨至賣完的過程中的損耗忽略不計)
x123
y1214469
(1)分別求出y1、y2關(guān)于x的函數(shù)式;
(2)若甲級板栗與乙級板栗分別以8元/千克、6元/千克的零售價出售,則賣完這批板栗獲得的毛利潤是多少元?
(3)問從第幾天起甲級板栗每天銷量比乙級板栗每天的銷量至少多15千克?

查看答案和解析>>

同步練習(xí)冊答案