如圖,在△ABC中,D是∠BAC的平分線(xiàn)上一點(diǎn),BD⊥AD于D,DE∥AC交AB于E,請(qǐng)說(shuō)明
AE=BE.

證明:∵DE∥AC,
∴∠ADE=∠CAD,
∵AD是∠BAC的平分線(xiàn),
∴∠EAD=∠CAD,
∴∠ADE=∠EAD,
∴AE=DE,
∵BD⊥AD,
∴∠ADE+∠BDE=90°,∠EAD+∠ABD=90°,
∴∠ABD=∠BDE,
∴BE=DE,
∴AE=BE.
分析:根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等求出∠ADE=∠CAD,根據(jù)AD是∠BAC的平分線(xiàn)可以得到∠EAD=∠CAD,所以∠ADE=∠EAD,根據(jù)等角對(duì)等邊的性質(zhì)得AE=DE,又∠ADE+∠BDE=90°,∠EAD+∠ABD=90°,根據(jù)等角的余角相等的性質(zhì)∠ABD=∠BDE,所以BE=DE,因此AE=BE.
點(diǎn)評(píng):本題主要考查平行線(xiàn)的性質(zhì),角平分線(xiàn)的定義,等角的余角相等的性質(zhì),熟練掌握性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線(xiàn),畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線(xiàn)分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案