【題目】為鼓勵居民節(jié)約用電,某市采用價格調(diào)控手段達到省電目的.該市電費收費標準如下表(按月結算) :
每月用電量/度 | 電價/(元/度) |
不超過度的部分 | 元/度 |
超過度且不超過度的部分 | 元/度 |
超過度的部分 | 元/度 |
解答下列問題:
(1)某居民月份用電量為度,請問該居民月應繳電費多少元?
(2)設某月的用電量為度,試寫出不同用電量范圍應繳的電費(用表示) .
(3)某居民月份繳電費元,求該居民月份的用電量.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB的平分線交AB于點D,作CD的垂直平分線,分別交AC、DC、BC于點E、G、F,連接DE、DF.
(1)求證:四邊形DFCE是菱形;
(2)若∠ABC=60,∠ACB=45°,BD=2,試求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點,點A在點B的左邊,與y軸交于點C,點D是拋物線的頂點,且A(﹣6,0),D(﹣2,﹣8).
(1)求拋物線的解析式;
(2)點P是直線AC下方的拋物線上一動點,不與點A、C重合,求過點P作x軸的垂線交于AC于點E,求線段PE的最大值及P點坐標;
(3)在拋物線的對稱軸上足否存在點M,使得△ACM為直角三角形?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)比較左、右兩圖的陰影部分面積,可以得到乘法公式 _________ (用式子表達).
(2)運用你所得到的公式,計算(a+2b﹣c)(a﹣2b﹣c).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以直線AB上一點O為端點作射線OC,使∠AOC=65°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OA上,則∠COE= ;
(2)如圖②,將直角三角板DOE繞點O順時針方向轉動到某個位置,若OC恰好平分∠AOE,求∠COD的度數(shù);
(3)如圖③,將直角三角板DOE繞點O任意轉動,如果OD始終在∠AOC的內(nèi)部,試猜想∠AOD和∠COE有怎樣的數(shù)量關系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個批發(fā)商銷售成本為20元/千克的某產(chǎn)品,根據(jù)物價部門規(guī)定:該產(chǎn)品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關系,對應關系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數(shù)關系式;
(2)該批發(fā)商若想獲得4000元的利潤,應將售價定為多少元?
(3)該產(chǎn)品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,△ABC中,∠ACB=90°,AC=BC,點E是BC上一點,連接AE.
(1)如圖1,當∠BAE=15°,CE=時,求AB的長.
(2)如圖2,延長BC至D,使DC=BC,將線段AE繞點A順時針旋轉90°得線段AF,連接DF,過點B作BG⊥BC,交FC的延長線于點G,求證:BG=BE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com