如圖,梯形ABCD是一個(gè)攔河壩的截面圖,壩高為6米.背水坡AD的坡角α為45°,為了提高河壩的抗洪能力,防汛指揮部決定加固河壩,若壩頂CD加寬0.8米,新的背水坡EF的坡度為1:1.4.河壩總長(zhǎng)度為500米.
(1)求完成該工程需要多少立方米方土?
(2)某工程隊(duì)在加固600立方米土后,采用新的加固模式,這樣每天加固方數(shù)是原來(lái)的2倍,結(jié)果只用11天完成了大壩加固的任務(wù).請(qǐng)你求出該工程隊(duì)原來(lái)每天加固多少立方米土?
分析:(1)過(guò)點(diǎn)D作DG⊥AB于G,過(guò)點(diǎn)E作EH⊥AB于H,由CD與AB平行,得到兩垂線段相等,再由α為4°,求出AG=DG=EH,根據(jù)EF坡度求出FH的長(zhǎng),由FH+GH-AG求出FA的長(zhǎng),利用梯形面積公式求出梯形ADEF面積,即可確定出土方;
(2)設(shè)原來(lái)每天加固x米,根據(jù)題意列出關(guān)于x的分式方程,去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到結(jié)果.
解答:解:(1)過(guò)點(diǎn)D作DG⊥AB于G,過(guò)點(diǎn)E作EH⊥AB于H,
∵CD∥AB,
∴EH=DG=6米,
∵tan45°=
DG
AG
,
∴AG=6米,
EH
FH
=
1
1.4
,
∴FH=8.4米,
∴FA=FH+GH-AG=8.4+0.8-6=3.2(米),
∴S梯形ADEF=
1
2
(ED+FA)•EH=
1
2
×(0.8+3.2)×6=12,
∴V=12×500=6000(立方米);     
              
(2)設(shè)原來(lái)每天加固x米,根據(jù)題意,
得:
600
x
+
6000-600
2x
=11,
去分母,得 1200+5400=22x,
解得:x=300,
檢驗(yàn):當(dāng)x=300時(shí),2x≠0(或分母不等于0),
∴x=300是原方程的解.                                   
答:該工程隊(duì)原來(lái)每天加固300米.
點(diǎn)評(píng):此題考查了解直角三角形-坡度坡角問(wèn)題,以及分式方程的應(yīng)用,弄清題意是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖等腰梯形ABCD是⊙O的外切四邊形,O是圓心,腰長(zhǎng)4cm,則∠BOC=
 
度,梯形中位線長(zhǎng)
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖等腰梯形ABCD是過(guò)街天橋的示意圖,已知天橋的斜面坡度為1:
3
,橋高DE=5米,那么斜面CD的長(zhǎng)等于
 
米.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•涼山州)如圖,梯形ABCD是直角梯形.
(1)直接寫(xiě)出點(diǎn)A、B、C、D的坐標(biāo);
(2)畫(huà)出直角梯形ABCD關(guān)于y軸的對(duì)稱(chēng)圖形,使它與梯形ABCD構(gòu)成一個(gè)等腰梯形.
(3)將(2)中的等腰梯形向上平移四個(gè)單位長(zhǎng)度,畫(huà)出平移后的圖形.(不要求寫(xiě)作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•張家口一模)如圖,梯形ABCD是一個(gè)攔河壩的截面圖,壩高為6米.背水坡AD的坡度i為1:1.2,為了提高河壩的抗洪能力,防汛指揮部決定加固河壩,若壩頂CD加寬0.8米,新的背水坡EF的坡度為1:1.4.河壩總長(zhǎng)度為4800米.
(1)求完成該工程需要多少方土?
(2)某工程隊(duì)在加固600米后,采用新的加固模式,這樣每天加固長(zhǎng)度是原來(lái)的2倍,結(jié)果只用9天完成了大壩加固的任務(wù).請(qǐng)你求出該工程隊(duì)原來(lái)每天加固的米數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,梯形ABCD是世紀(jì)廣場(chǎng)的示意圖,上底AD=90m,下底BC=150m,高100m,虛線MN是梯形ABCD的中位線.要設(shè)計(jì)修建寬度相同的一條橫向和兩條縱向大理石通道,橫向通道EGHF位于MN兩旁,且EF、GH與MN之間的距離相等,兩條縱向通道均與BC垂直,設(shè)通道寬度為xm.
(1)試用含x的代數(shù)式表示橫向通道EGHF的面積s1;
(2)若三條通道的面積和恰好是梯形ABCD面積的
14
時(shí),求通道寬度為x;
(3)經(jīng)測(cè)算大理石通道的修建費(fèi)用y1(萬(wàn)元)與通道寬度為xm的關(guān)系式為:y1=14x,廣場(chǎng)其余部分的綠化精英家教網(wǎng)費(fèi)用為0.05萬(wàn)元/m2,若設(shè)計(jì)要求通道寬度x≤8m,則寬度x為多少時(shí),世紀(jì)廣場(chǎng)修建總費(fèi)用最少?最少費(fèi)用為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案