如圖△ABC≌△A′B′C′,AD是△ABC的一條角平分線A′D′是△A′B′C′的一條角平分線.
求證:AD=A′D′.

證明:∵△ABC≌△A′B′C′,
∴∠B=∠B′,∠BAC=∠B′A′C′,AB=A′B′,
AD是△ABC的一條角平分線A′D′是△A′B′C′的一條角平分線,
∴∠BAD=∠BAC,∠B′A′D′=∠B′A′C′,
∴∠BAD=∠B′A′D′,
在△BAD和△B′A′D′中

∴△BAD≌△B′A′D′(ASA),
∴AD=A′D′.
分析:根據(jù)全等三角形性質(zhì)得出∠B=∠B′,∠BAC=∠B′A′C′,AB=A′B′,求出∠BAD=∠B′A′D′,證△BAD≌△B′A′D′,即可得出答案.
點(diǎn)評:本題考查了全等三角形的性質(zhì)和判定和角平分線定義的應(yīng)用,主要考查學(xué)生的推理能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖△ABC中,AB=AC,CD、BE是△ABC的角平分線;
求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°.
求證:BD=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、根據(jù)給出的下列兩種情況,請用直尺和圓規(guī)找到一條直線,把△ABC恰好分割成兩個等腰三角形(不寫做法,但需保留作圖痕跡);并根據(jù)每種情況分別猜想:∠A與∠B有怎樣的數(shù)量關(guān)系時才能完成以上作圖?并舉例驗(yàn)證猜想所得結(jié)論.
(1)如圖①△ABC中,∠C=90°,∠A=24°

①作圖:
②猜想:
③驗(yàn)證:
(2)如圖②△ABC中,∠C=84°,∠A=24°.

①作圖:
②猜想:
③驗(yàn)證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寧津縣一模)如圖△ABC中BD和CE是兩條高,∠A=45°,∠ADE=∠ABC,則
DE
BC
=
2
2
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖△ABC的面積為a.
(1)如圖1,延長△ABC的邊BC到點(diǎn)D,使CD=BC,連接DA.則△ACD的面積為
a
a
(用含a的代數(shù)式表示);
(2)如圖2,延長△ABC的邊BC到點(diǎn)D,延長邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE,BE.則陰影部分的面積為
3a
3a
(用含a的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案