已知:如圖,銳角△ABC的兩條高CD、BE相交于點O,且OB=OC

【小題1】求證:△ABC是等腰三角形
【小題2】連結(jié)AO,判斷AO與BC的位置關(guān)系,并說明理由.
p;【答案】
【小題1】見解析
【小題2】點O在∠BAC的角平分線上解析:
p;【解析】(1)∵OB=OC,
∴∠OBC=∠OCB,
∵銳角△ABC的兩條高BD、CE相交于點O,
∴∠BEC=∠BDC=90°,
∵∠BEC+∠BCE+∠ABC=∠BDC+∠DBC+∠ACB=180°,
∴∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形;
(2)點O在∠BAC的角平分線上.
理由:連接AO并延長交BC于F,
∵AB=AC,OB=OC,
又∵OA=OA,
∴△AOB≌△AOC.
∴∠BAF=∠CAF,
∴點O在∠BAC的角平分線上
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

10、已知:如圖,銳角△ABC的兩條高BD、CE相交于點O,且OB=OC.
(1)求證:△ABC是等腰三角形;
(2)判斷點O是否在∠BAC的角平分線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、已知,如圖,銳角△ABC中,AD⊥BC于D,H為垂心(三角形三條高線的交點);在AD上有一點P,且∠BPC為直角.
求證:PD2=AD•HD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,銳角三角形ABC內(nèi)接于⊙O,∠ABC=45°;點D是
BC
上的一點,過精英家教網(wǎng)點D的切線DE交AC的延長線于點E,且DE∥BC;連接AD、BD、BE,AD的垂線AF與DC的延長線交于點F.
(1)求證:△ABD∽△ADE;
(2)記△DAF、△BAE的面積分別為S△DAF、S△BAE,求證:S△DAF>S△BAE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,銳角△ABC內(nèi)接于⊙O,∠ABC=45°;點D是
BC
上一點,過點D的切線DE交AC的延長線于點E,且DE∥BC;連接AD、BD、BE,AD的垂線AF與DC的延長線交于點F.
(1)求證:△ABD∽△ADE;
(2)若AB=8cm,AE=6cm,求△DAF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,銳角△ABC的兩條高BD、CE相交于點O,且OB=OC.
求證:OA平分∠BAC.

查看答案和解析>>

同步練習冊答案