(2012•龍巖)下列命題中,為真命題的是( 。
分析:分別判斷四個選項的正確與否即可確定真命題.
解答:解:A、對頂角相等為真命題;
B、兩直線平行,同位角相等,故為假命題;
C、a2=b2,則a=±b,故為假命題;
D、若a>b,則-2a<-2b,故為假命題;
故選A.
點評:主要考查命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•龍巖模擬)由于電力緊張,某地決定對工廠實行“峰谷”用電.規(guī)定:在每天的8:00至22:00為“峰電”期,電價為a元/度;每天22:00至次日8:00為“谷電”期,電價為b元/度.下表為某廠4、5月份的用電量和電費的情況統(tǒng)計表:
月份 用電量(萬度) 電費(萬元)
4 12 6.4
5 16 8.8
(1)若4月份“谷電”的用電量占當(dāng)月總電量的
1
3
,5月份“峰電”的用電量占當(dāng)月總用電量的
3
4
,求a、b的值;
(2)若6月份該廠預(yù)計用電20萬度,為將電費控制在10萬元至10.6萬元之間(不含10萬元和10.6萬元),那么該廠6月份在“谷電”的用電量占當(dāng)月用電量的比例應(yīng)在什么范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•龍巖)矩形ABCD中,AD=5,AB=3,將矩形ABCD沿某直線折疊,使點A的對應(yīng)點A′落在線段BC上,再打開得到折痕EF.
(1)當(dāng)A′與B重合時,(如圖1),EF=
5
5
;當(dāng)折痕EF過點D時(如圖2),求線段EF的長;
(2)觀察圖3和圖4,設(shè)BA′=x,①當(dāng)x的取值范圍是
3≤x≤5
3≤x≤5
時,四邊形AEA′F是菱形;②在①的條件下,利用圖4證明四邊形AEA′F是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•龍巖)在平面直角坐標(biāo)系xOy中,一塊含60°角的三角板作如圖擺放,斜邊AB在x軸上,直角頂點C在y軸正半軸上,已知點A(-1,0).

(1)請直接寫出點B、C的坐標(biāo):B
(3,0)
(3,0)
、C
(0,
3
(0,
3
;并求經(jīng)過A、B、C三點的拋物線解析式;
(2)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點E放在線段AB上(點E是不與A、B兩點重合的動點),并使ED所在直線經(jīng)過點C.此時,EF所在直線與(1)中的拋物線交于點M.
①設(shè)AE=x,當(dāng)x為何值時,△OCE∽△OBC;
②在①的條件下探究:拋物線的對稱軸上是否存在點P使△PEM是等腰三角形?若存在,請寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案