如圖,梯形ABCD中,AD∥BC,BC=2AD,F(xiàn)、G分別為邊BC、CD的中點(diǎn),連接AF,F(xiàn)G,過(guò)D作DE∥GF交AF于點(diǎn)E。
1.證明△AED≌△CGF
2.若梯形ABCD為直角梯形,判斷四邊形DEFG是什么特殊四邊形?并證明你的結(jié)論。
1.證明;∵ BC=2AD、點(diǎn)F為BC中點(diǎn)
∴CF=AD ............................................................. 1分
∵AD∥CF ∴四邊形AFCD為平行四邊形
∴∠FAD=∠C ....................................................2分
∵DE∥FG ∴∠DEA=∠AFG
∵AF∥CD ∴∠AFG=∠FGC ...........................................3分
∴∠DEA=∠FGC .....................................................4分
∴△AED≌△CGF�。捣�
2.連結(jié)DF
易證四邊形ADCF是平行四邊形,四邊形ABFD是矩形.......................7分
又因?yàn)辄c(diǎn)E,G分別為AF,CD的中點(diǎn)
所以 DE=EF=FG=GD 即四邊形DEFG是菱形。...............................10分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、
| ||||
B、4
| ||||
C、
| ||||
D、4
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| ||
10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com