【題目】如圖,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,則∠EFC=____°.
【答案】45.
【解析】試題分析:根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AE=BE,然后求出△ABE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)求出∠BAE=∠ABE=45°,再根據(jù)等腰三角形兩底角相等求出∠ABC,然后求出∠CBE,根據(jù)等腰三角形三線合一的性質(zhì)可得BF=CF,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得BF=EF,根據(jù)等邊對(duì)等角求出∠BEF=∠CBE,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.
解:∵DE垂直平分AB,
∴AE=BE,
∵BE⊥AC,
∴△ABE是等腰直角三角形,
∴∠BAE=∠ABE=45°,
又∵AB=AC,
∴∠ABC=(180°﹣∠BAC)=(180°﹣45°)=67.5°,
∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,
∵AB=AC,AF⊥BC,
∴BF=CF,
∵EF=BC(直角三角形斜邊中線等于斜邊的一半),
∴BF=EF=CF,
∴∠BEF=∠CBE=22.5°,
∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.
故答案為:45.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( ).
A.4m﹣m=3 B.2m2m3=2m5
C.(﹣m3)2=m9 D.﹣(m+2n)=﹣m+2n
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小李制作了一張△ABC紙片,點(diǎn)D、E分別在邊AB、AC上,現(xiàn)將△ABC沿著DE折疊壓平,使點(diǎn)A落在點(diǎn)A′位置.若∠A=75°,則∠1+∠2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在外來(lái)文化的滲透和商家的炒作下,過(guò)洋節(jié)儼然成為現(xiàn)今青少年一種時(shí)尚,圣誕節(jié)前期,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為每個(gè)2元的蘋(píng)果的銷售情況,請(qǐng)根據(jù)小麗提供的信息,解答小華和小明提出的問(wèn)題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的是( )
A.對(duì)角線相等的四邊形是矩形
B.對(duì)角線互相垂直的四邊形是菱形
C.對(duì)角線互相垂直平分且相等的四邊形是正方形
D.一組對(duì)邊相等,另一組對(duì)邊平行的四邊形是平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義兩種新變換:①f(a,b)=(a,-b),如f(1,2)=(1,-2);②g(a,b)=(b,a),如g(1,2)=(2,1).據(jù)此得g(f(5,-6))=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=x2﹣6x+5向上平移2個(gè)單位長(zhǎng)度,再向右平移1個(gè)單位長(zhǎng)度后,得到的拋物線解析式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定理“等腰三角形的兩個(gè)底角相等”的逆定理是( )
A. 有兩個(gè)角相等的三角形是等腰三角形.
B. 有兩個(gè)底角相等的三角形是等腰三角形.
C. 有兩個(gè)角不相等的三角形不是等腰三角形.
D. 不是等腰三角形的兩個(gè)角不相等.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com