如圖,矩形ABCD中,點M從A點出發(fā)在線段AB上作勻速運動(不與A、B重合),同時點N從B點出發(fā)在線段BC上作勻速運動.
(1)如圖1,若M為AB中點,且DM⊥MN.請在圖中找出兩對相似三角形:
①______∽_______,②______∽______,選擇其中一對加以證明;
(2)①如圖2,若AB=5,BC=3點M的速度為1個單位長度/秒,點N的速度為個單位長度/秒,運動的時間為t秒.當t為何值時,△DAM與△MBN相似?請說明理由;
②如果把點N的速度改為a個單位長度/秒,其它條件不變,是否存在a的值,使得△DAM與△MBN和△DCN這兩個三角形都相似?若存在,請求出a的值;若不存在,請說明理由.
【答案】分析:(1)首先可得有△DAM∽△MBN,△DAM∽△DMN,△DMN∽△MBN三對相似;然后選擇其中的一對證明即可,注意應(yīng)用矩形的性質(zhì),特別是同角或等角的余角相等的性質(zhì)的應(yīng)用;
(2)①如圖2可得AM=t,MB=5-t,BN=t(0<t<5),然后分兩種情況:(Ⅰ)當∠1=∠3時,△DAM∽△MBN與(Ⅱ)當∠2=∠3時,△DAM∽△NBM去分析根據(jù)相似三角形的對應(yīng)邊成比例,即可得方程,解方程即可求得答案;
②分四種情況去分析:(Ⅰ)當∠1=∠3=∠6時,∠DMN=90°,△DAM∽△MBN∽△DCN,(Ⅱ)當∠1=∠3=∠5時,(Ⅲ)當∠2=∠3=∠6時,(Ⅳ)當∠2=∠3=∠5時,△DAM∽△NBM∽△DCN,根據(jù)相似三角形的對應(yīng)邊成比例列方程求解即可求得答案.
解答:解:(1)有△DAM∽△MBN,△DAM∽△DMN,△DMN∽△MBN三對相似;
選△DAM∽△MBN,
證明:∵四邊形ABCD是矩形,
∴∠A=∠B=90°,
∴∠ADM=90°-∠AMD,
∵DM⊥MN,
∴∠BMN=180°-90°-∠AMD=90°-∠AMD,
∴∠ADM=∠BMD,
∴△DAM∽△MBN;

選△DAM∽△DMN,
證明:延長NM交DA的延長線于E點,如圖1.
∵四邊形ABCD是矩形,
∴∠DAB=∠B=90°,
∴∠EAM=∠B=90°,
又∵∠AME=∠BMN,AM=BM,
∴△AME≌△BMN,
∴EM=MN,
又∵DM⊥MN,
∴DE=DN,
∴∠ADM=∠NDM,
又∵∠DAM=∠DMN=90°,
∴△DAM∽△DMN;

選△DAM∽△MBN,
證明:延長MN交DA的延長線于E點,如圖1.
∵四邊形ABCD是矩形,
∴∠DAB=∠B=90°,
∴∠EAM=∠B=90°,
又∵∠AME=∠BMN,AM=BM,
∴△AME≌△BMN,
∴EM=MN,∠E=∠MNB,
又∵DM⊥MN,
∴DE=DN,
∴∠E=∠DNM,
∴∠DNM=∠MNB,
又∵∠DMN=∠B=90°,
∴△DMN∽△MBN;

(2)①如圖2,AM=t,MB=5-t,BN=t(0<t<5),
分兩種情況:(Ⅰ)當∠1=∠3時,△DAM∽△MBN,
,
,
解得:t=,
(Ⅱ)當∠2=∠3時,△DAM∽△NBM,
,
∴AM•BN=AD•BM,
∴t×t=3(5-t),
解得:t3=-3,t4=--3(不合題意舍去),
∴當t=時,△DAM∽△MBN;當t=-3時,△DAM∽△NBM.

②分四種情況:(Ⅰ)當∠1=∠3=∠6時,∠DMN=90°,△DAM∽△MBN∽△DCN,

得:BN=,
∴CN=
,得:CN•MB=DC•BN,
-(5-t)=5-,
化簡得:t2-10t+9=0,解得:t1=1,t2=9(不合題意舍去),a=,
(Ⅱ)當∠1=∠3=∠5時,
∵∠5+∠6=90°,
∴∠1+∠6=90°,(與已知條件矛盾)
所以此時不存在.
(Ⅲ)當∠2=∠3=∠6時,
方法一:∵∠1+∠2=90°,
∴∠1+∠6=90°,(與已知條件矛盾)所以此時不存在.
方法二:由,
得:BN=,
∴CN=,
,得:CN•MB=DC•BN,
(5-t)=5-
解得:t=5(不合題意舍去),所以此時不存在.
(Ⅳ)當∠2=∠3=∠5時,△DAM∽△NBM∽△DCN,
由(Ⅲ)得BN=,
∴CN=,
,得:CN•NB=DC•BM,
-=5(5-t),
化簡得:5t2-18t+45=0方程沒有實數(shù)根,所以此時不存在.
綜上所述:當a=時,△DAM∽△MBN∽△DCN.
點評:此題考查了相似三角形的判定與性質(zhì),矩形的性質(zhì),一元二次方程的解法,以及直角三角形的性質(zhì)等知識.此題綜合性很強,難度較大,解題的關(guān)鍵是方程思想與數(shù)形結(jié)合思想的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點,DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關(guān)系式一定滿足( 。
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點,且BE=ED,P是對角線上任意一點,PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點,且AF=BE,連結(jié)DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習冊答案