如圖,在直角坐標(biāo)平面內(nèi),O為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為(1,0),B點(diǎn)在x軸上且在點(diǎn)A的右側(cè),AB=OA,過點(diǎn)A和B作x軸的垂線分別交二次函數(shù)y=x2的圖象于點(diǎn)C和D,直線OC交BD于M,直線CD交y軸于點(diǎn)H。記C、D的橫坐標(biāo)分別為xC,xD,點(diǎn)H的縱坐標(biāo)yH。

(1)證明:①S△CMD∶S梯形ABMC=2∶3

②xC·xD=-yH

(2)若將上述A點(diǎn)坐標(biāo)(1,0)改為A點(diǎn)坐標(biāo)(t,0),t>0,其他條件不變,結(jié)論S△CMD:S梯形ABMC=2∶3是否仍成立?請(qǐng)說明理由。

(3)若A的坐標(biāo)(t,0)(t>0),又將條件y=x2改為y=ax2(a>0),其他條件不變,那么XC、XD和yH又有怎樣的數(shù)量關(guān)系?寫出關(guān)系式,并證明。

 

 

(1)略

(2)成立

(3)xC·xD=-yH.

解析:

解:(1)由已知可得點(diǎn)B的坐標(biāo)為(2,0)點(diǎn)C的坐標(biāo)為(1,1),點(diǎn)D的坐標(biāo)為(2,4),且直線OC的函數(shù)解析式為y=x。

∴點(diǎn)M的坐標(biāo)為(2,2),易得S△CMD=1,S梯形ABMC  ………………(1.5')

∴S△CMD∶S梯形ABMC=2∶3,即結(jié)論①成立。

設(shè)直線CD的函數(shù)解析式為y=kx+b,則

                   即

∴直線CD的解析式為y=3x-2。

由上述可得點(diǎn)H的坐標(biāo)為(0,-2),即yH=-2  ……………(2.5')

∴xC·xD=-yH.     即結(jié)論②成立    ………………………………(3')

(2)結(jié)論S△CMD:S梯形ABMC=2:3仍成立. ………………………………………(4')

理由如下:∵點(diǎn)A的坐標(biāo)為(t,0),(t>0).

則點(diǎn)B的坐標(biāo)為(2t,0)

從而點(diǎn)C的坐標(biāo)為(t,t2),點(diǎn)D的坐標(biāo)為(2t,4t2).

設(shè)直線OC的解析式為y=kx,則t2=kt      得k=t

∴直線OC的解析式為y=tx    ………………………………(5')

又設(shè)M的坐標(biāo)為(2t,y)

∵點(diǎn)M在直線OC上

∴當(dāng)x=2t時(shí),y=2t2

∴點(diǎn)M的坐標(biāo)為(2t,2t2      ………………………………(6')

∴S△CMD:S梯形ABMC·2t2·t∶(t2+2t2)·t

         =t3∶(t3

   …………………………………(7')

(3)xC,xD和yH有關(guān)數(shù)量關(guān)系xC·xD=-yH. ………………………………(8')

由題意,當(dāng)二次函數(shù)的解析式為y=ax2(a>0),且點(diǎn)A的坐標(biāo)為(t,0)時(shí),點(diǎn)C的坐標(biāo)為(t,at2),點(diǎn)D的坐標(biāo)為(2t,4at2)  ………………(9')

設(shè)直線CD的解析式為y=kx+b

             得

∴CD的解析式為y=3atx-2at2 ……………………………………(11')

則H的坐標(biāo)為(0,-2at2)即yH=-2at2…………………………(11.5')

∵xC·xD=t·2t=2t……………………………………………(12')

∴xC·xD=-yH.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面xOy中,拋物線C1的頂點(diǎn)為A(-1,-4),且過點(diǎn)B(-3,0)
(1)寫出拋物線C1與x軸的另一個(gè)交點(diǎn)M的坐標(biāo);
(2)將拋物線C1向右平移2個(gè)單位得拋物線C2,求拋物線C2的解析式;
(3)寫出陰影部分的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面中,Rt△ABC的斜邊AB在x軸上,直角頂點(diǎn)C在y軸的負(fù)半軸上,cos∠ABC=
45
,點(diǎn)P在線段OC上,且PO、OC的長(zhǎng)是方程x2-15x+36=0的兩根.
(1)求P點(diǎn)坐標(biāo);
(2)求AP的長(zhǎng);
(3)在x軸上是否存在點(diǎn)Q,使以A、Q、C、P為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)求出直線PQ的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面內(nèi),函數(shù)y=
m
x
(x>0,m是常熟)的圖象經(jīng)過A(1,4),B(a,b),其中a>1,過點(diǎn)A作x軸垂線,垂足為C,過點(diǎn)B作y軸垂線,垂足為D,連接AD,DC,CB
(Ⅰ)求函數(shù)y=
m
x
的解析式;
(Ⅱ)若△ABD的面積為4,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

完成下列各題:
(1)解方程組
2x+y=2;         ①
3x-2y=10.      ②

(2)如圖,在直角坐標(biāo)平面內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)B在第一象限內(nèi),BO=5,sin∠BOA=
3
5
.求cos∠BAO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)平面內(nèi)的△ABC中,點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)C的坐標(biāo)為(5,5),要使以A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,且點(diǎn)D坐標(biāo)在第一象限,那么點(diǎn)D的坐標(biāo)是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步練習(xí)冊(cè)答案